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Abstract: The propagation of an elastic pulse through the simple
geometric forms, rods and plates, is investigated from & theoreiical
point of view with the aid of the small-motion dynamic elastic ejuations
of an isotropic, homogeneous, dissipationless solid.

The investigation is restricted to disturbances which are initislly
plane-wave pulses of dilatation, and formal solutions are developed by
Fourier transform methods (symmetric and one sided). The resulting
formal solutions are developed into infinite serics, the terms of which
represent the total contributicn of wave-groups which can be asscciated
with the paths of minimum transit time oredicred by the mesthods of
geometrical optics.

These paths, and tne associated wave »roups, are found tc be
characterized by two intepers n, and N, which represent the number
of times the thickness of the plate (or dlamcter of the rod) has been
traversed 22 a dilatational wave ond a3 o rotational wave respectively.
The variety in these peths ie found to resait {rom conversions of

dilatatiocnal wave enerpy Lo rotational wave anerey at tne free surfaces




When the Polsson ratio, @, is zero, this conversion effect doss not
exist for the disturbances considered, and all of the energy is carried
by the direct dilatational wave (nl - n, = 0).

The terms of these series are simplified by contour deformation
methods and are found to represent transients with the minimum transit
time. predicted by the methods of geomaetrical aptics. In the case of
the plate, the simplification enables one to carry out finite numerical
integrations in obtaining quantitative data on the pulse shape and
amplitude cf the disturbances associated with any specific values of
ny and nza

Various interference effects are found between these wave-groups
as t ®and/or the distance of tran3smission » ©@., It is shown that
thase wave-groups interfere in such a way that the total disturbance
becomes asymptotically & plane wave travelling with the veloccity
predicted in the classical thesories of thin plates and rods.

A cosparison is made of these theoretical considerations and the
experiments reported by Hughes, Pondrom and Mims} and their failure to
identify any wave groups other than those corresponding to the direct
dilatational and critical angle paths (all of which have n, = 0) is

1

explained.

1 . . . - A
D. 5. Hughes, W. L. Pondrom, and R. L. Hims, Phys. dev. 75,

155< - 1556, {1949).
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I. INTRODUCTION

In & recent psper, Hughéa. Pondrom, and Kimsl have described a gquick

lD, S. Hughes, W. L. Pondrom, and R. L. Mims, Pnys. Rev. 75,
15521556, (1949).

and accurate method of determining the dynamic elastic constants of
isotropic, homogeneous solids from the transmission times of elastic
puises through samples in the shape of right circular cylinders.

In this method a longitudinal elastic pulse is delivered to one
end of the rod by a piezo-electric driver (an X-cut quartz crystal), and
the arrival of longitudinal pulses at the opposite end is detected by a2
pleso-electric detector (another X-iut quartz crystal). In general,
many pulses arrive at the detector for each pulse delivered by the driver,
and the transit time of each pulse is determined by an electronic system
in which a crystal oscillator acts as the basic time standard or clock.

Although only longitudinal excitation and detection are employed,
soze of the pulses are transmitted part of the way by rotational waves,
and the valocity of rotational waves as well as the velocity cf dila-
tational waves may be determined from thcozc Lransi’t times. From these
velocities and the density of the materizl, all of lis elastic constants
may be determined.

A simple theory was devised wiith Lhe metnods of geometrical optices,
which had been sugcessfully applied o many similer problems in seis-
mology.

iteferring to Fig. 1, the pulse delivered by the driving crystal

1.1
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1.2
would be expected to generate a group of plane waves of dilatation
having a continucus distribution of frequencies and traveling very nsarly
parallel to the free cylindrical wall of the rod. Part of the energy of

these waves may be expected to be converted into rotationai waves at the

free cylindrical boundary2 since dilatational waves alone cannot in general

2H. Poincaore, Lecons sur la theorie de l'elasticite, (Paris 1292),
p. 124f.

Handbuch der Fhysik, Bd. VI (Verlag, Julius Springer, Berlin, 1928),
PpP. 323-324.

See also refsrence 7.

satisfy the free boundary conditions. On the other hand, & portion of
the energy of these dilatational waves will reach the opposite end of

tne rod without modification. In terms of ray paths, this would corres-

pand tooouch g ovath na b oeroac. If T dis tha langth of the rod and a
ig the ve . _ty of dilatational waves in the rod, i puise truoosmitved
alonr such 0 vath would arrive at the detector withh 3 Lransizsion tire,

L, given by

T = - (1.1)
Rcturning to the rctaticnal waves obtained by transformetion at the
free boundery, such waves must follow Snell's law as in optics. 1If u is
the velocity of rotational waves in the rod, this requires that

sl O
R

ssemaat %
ain O

D

F2 SRR

w e

where GD ia the angle between the direction of travel and the normal to

tiis boundary surface, and G, 18 the anple Lcbtweer 4 dimcstion of antiam

R
¢i the rotational wave, obtalned vy urastorration at the boundary, ana

L normal to “he pownanry surface,



1.3

3ince b £a, and in the present case 0. = 90°, ths rotational waves

D
must travel approximately at the critical angle GC relative to the normal
of the boundary surface where GC is given by
3in 9, = b/a (1.3)

C

Juch rotational waves, obtained by transformation at the upper
boundary, would eventuslly strike the lower boundary and there give rise
to a reflected rotational wave and a dilatational wave. In satisfying
Snell's law, these dilatational waves obtained by transformation at the
lower boundary must travel very nearly parallel to the boundary, and part
of their energy would eventually reach the detector end of thr rod. This
energy would then have been carried over such a path as Ba;g where Sa and
Td were traversed as dilatational waves, and a; was traversed as a rota-
tional wave.

1f D is the Jiameter of the rod, it 1s obvious that the length of
the path gr is D csc e?, whiie the distance advanced along the length of
the rod is D tan dc. Conseguently the time delay in t.oanswmission, at,
incurred by taking the path SHFJ instead of bc is given by

-2 a-2)1/2

ot = {(J/b) cse be - (D/a) tan g = D(b™° - (1.4)

where the last form is obtained by elimination of o, with e_uation (1.3).

c

It is apparent that cuch transformaticns can, in general; take place

a number of times. Consequently, such paths a3 E;;;ZE and Eg}sturd are
sossinie ond oo cospond to delays in transmission of 23t and 34t re-
anectively, and esach gives rise to a longitudinal pulse at the detector
end of the rod.

The proceas ¢f retlection at the onds of the rod can also rive rise

Lo delayed arrivais.  an particuiar, rart of the energy of the original



Lens
dilatational wave vroup cnn be reflected without chunge of mode of trans-
missicn, once at each end of the rod, and thus travel the length of the
rod three times. Jimilwrly, it coull Le reflected twice el each enid ond
travel tne length of tiie rod five times etc.

As a rasult of these two processes; transit times corres

the equation

g & mli/a) + Ap(B2 - & 52 (1.5)
are to be expected where m is any positive odd integer and n is any
positive integer or zero. Here i is the number of timea the length of
the rod is traversed, and n is the nuaber of delays incurred by the trans-
fer of mode of transmission process. 3Since during each such delay the
delayed disturbance moves the distence D tan GC along the lenisth of the
rod, it i3 obvious that the integers m and n must satisfy the rescri-‘ _ci.

ml 2 nD tan BC (1 6)

The experimentel rciults are in excellsnt sgreement with ejuations
(1.5) and (1.6), Each of the multiplicity of detected longituainal
pulscs obtalned for each driving pulse corresponds to a particular ad-
missihle combination of the integers m and n, and the appropriate vari-
ations are observea when the diameter or length of the ruds is ultered.l
However, the relative emplitudes of the various delayed pulses are functions
of L, D, my n, a, b, and the tendency of the material in the rcd to dis-
perse the energy in such a disturbance into random elastic disturbances
(heat motions), and many of the arrivals predicted oy ejuations (1.5) and
(1.6} are too feeble to be detected under some experlmental conditions.

Trhe exact wave form and duration of the driving pulse are obviously

of considerable importance. The duration chould be smsll compared to each
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o A2

) in order thst the detectsi pulses

of the times (L,/a) sand D'\b-'2 - 3
be easily r=solved in terms of arrival times, and the wave form should
be simple but easily recognized against background disturbances. But,
aside from these ccnsiderations, thers anpears to be no additional in-
formetion obtainable from geometric optical methods.

In an affort to obtain more detailed information, the literature
was searched for treatments of the transmission of pulses through a
finite circular rod made of dissipationless, hcmogeneous, isotropic
material. This searcﬁ was entirely withcut success; there is not even
an exact treatment of the free vibrations of a f{inite circular cylinder.

-

Pochhammer” has given a reasonably complete tresatment of some of the

3L. Pochhammer, J. f. Math (Urelle's Journal), 3d. 81, 32.-336,
{1876).

simpler modes of transmission of simple harmonic waves zleng an infinite
circular cylinder, but he was unable tc¢ adiust his wave aclutions to fit
all of the boundary conditions at the ends of a finite circular cylindesr.
However, since his solutions do satisfy the boundary conditions on the
free cylindrical surface, these should nermit & theoretical treatment of
the transfer of mode process dealt with above. 7This possibility is
exnlored by means of integral transformations in sections 2 and ! of this
paper.

Since this investigation requires the use of Lessel funstions, and
it was recognized from the start that some form oi appruiimation mi;ht‘
be required, it was found desirzable to investigate pulse transmission

throuch an infinite plste.

e S



1.6
The simple harmonic modes of tranc 1lon in an elastic plate were

A

investigated by Lord Rayleigh® in 1389 and by H. Lamb’ in 1891. De-

“Lord Raylelgh, Proc. Math. Soc. London, 20, 225-234, (1R89).

M. Lamb, Proc. Math. Soc. Lomdon, 21, p 85ff, (1891).

scriptions of Lthe various modes were given, and the existence of certain

types of nodal) surfaces was discussed. Although Lamb6 reconsidered the

6H. Lamb, Proc. Roy. Scc. London (A), 93, 114-128, (1916/17).

problem in 1916, very little additional progress was made. However, it
was noted that the apparent “wave velocity" belenging to thess modes

could be infinite and was often greater than the velocity of either dila-
tational or rotational wave: in an unbounded mediur. These investigators
ware aware that the velocity of diiatational waves i3 the maximum velocity
with which a transient could bs propagated into an undisturbed region but
offered nco very clear picture of the relationship of these modes of trans-
mission to the propagation of transients.

This problem was taken up by Prescott7 in 1942 in an effort to throw

7J. Prescott, Phil. Mag. Ser. 7, 33, 703-754, (1942).

some iignht on the benavior of rods. In a review of this articie, Bourgin8

8D~ G. Bf)ut‘gin, H&tho Ra‘fc, L’ p l?l, (19163)0

auggested that these modal velocities be treated as phase velocitles
and that classical group velccity theory be ussed te rationalize the

actnnl rate of energy flow.
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These modal velocities may properly be referred to as modal phase
velocities but are certainly not phase velocities in the same sense as
used in describing propagation in an unbounded medium. The group velocity
calculated from these by Hayleigh's classical formula gives, as usual,
the phase velocity of the modulation envelope for a disturbance which
is simple-harmonically modulated at a modulation frequency small compared
to the freguency of the carrisr mode. These group velocities are not
directly related to the fastest transmission of an abrupt signal. In

fact Sommerfeld and Brillouin9 clearly demonstrated in 1914 that the

9A. Sommerfeld, Ann. der Physik, 4L, 177-202, (1914).

L. Brillouin, ibid, 203, 240.

fastest transmission of an abrupt signal takes place at the phase velocity
corresponding to infinite frequency. These investigators actually dealt
with the anamolous dispersion found in electromagnetic wave phencmena, but
the results are capable of immediate generalization to all wave trans-
missions of signals.

In 1947 Cooperlo gave a completely satisfactory dewcnstration that

10,, L. B. Cooper, Phil. Mag. Ser. 7, 38, 1-22, (1947).

the modes cf simple harmonic propagation in a plate were in quantitative
agreement with the expected maximum velocity of propagation, the velocity
of dilatational waves in free space. His method was similar to that of
Sommerfeld and Brillouin. It was also pcinted out that the group velocity

suggestion of Bourgin was Jdefective in several respects. In elastic oro-



1.8
blems, a single velocity of energy trensfer is at hest some sort of an
average, &8 thers must be at least twe rates of transfer corresponding
to the dilatational and rotational methods of propagetion. In the modes
of propagation considered there &re two plane waves of dilatation and two
plane waves of rotation, all of which are individually traveling in
different dirsctions. In the classice) group velocity theory all of the
plane waves are traveling in the sams direction. Vo mention is made of
the fact that the maximum classical group velriuity does not determine the
velocity with which the first =ffects of a signal are transaitted.

Because of the complexity of his formal solution, Cooper did not
obtain quantitative informetion on anything except the very first arrival
time for a transient disturbance. In Sectiorl 3 there is considered a
particular problem in pulse transmission through a plate which closely
resembles in nature the pulse transmission problem in the rod as en-
countered by Hughes, Pondrom, and Mims. By the omployment of a suitable
series of mathematical manipulations, it is possible to break the dis-
turbance into parts segregated according to the nature of the path
(number and kind of rsflsctions). The contribution of the wave groups
making up each part is in turn analyzed in terms of a group transit time,
and the total contribution of each wave group is= then expressed in terms
of a single integration which can be carried out by numerical means to
obtain detailed quantitative informatior on the shape and amplitude of
all the possible reflections from the free surfaces bounding the plate.
Tre minimum group travel time is easily shown to determine the beginning

of the disturbance carried by sach wave group.
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An extensive effort has becn made by thiz author to break up into
similar wave groups tiec formal sclution obtained for the cylindrical rod
obtained in Section 2. This effort was only partially successful, and a
brief resume is given in Section 4.

In terms of physical experiments, only the rod problem can be set
up in an exact w-nner. The plate problem could be approximated by a rod
of rectangular cross section with one side of the rectangle large compared
to the other side and to the distance from driver to detector. However,
no quartz crystals of suitable shape are currently available for such an
experiment. As a result, the concluding section is devoted to a com-
parison of the theorctical solution for the piate problem with some

typical experimental data obtained from rods.



2. A FORMAL 0LUTION FOR THE PROPAGATION OF AN INITIALLY

PLANE DILATATIONAL PULSE ALONG A CYLINDRICAL ROD OF INFINITE LENGTH

A direct theoretical approach to the experiments carried out by
Hughes, Pondrom, and Mims is to consider the transmisaion of an inita-
ally plane dilatational pulse of energy along » rod o
cross-section. Since the terminal conditions 2t the plezo-electric
driver and plezo-electric detector are both partially unknown and difficult
(1f not impossaible) to handle by the present mathematical methods, we shall
resort to a simplifying assumption as to the behavior of the driving
crystal, take the rod to be infinite in length, and study the behavior
of the average normal stress on a plane section of the rod, normal to its
axis, located some distance along the rod from the driver. Thiz should
enable one to study the relative amplitudes of the various reflections
and is approximately proportional to the response of the detecting crystal.

The simplifying assumptions regarding the action of the driving
crystal are most easily understood from Fig. 2. Tha ciycular rod is

actually assumed to extend to infinity in length along the . axis in

either directicn &

L)

Oin Lie wrigin or coordinates, and the driving crystal
is thought of as occupying the plane section of the rod defined by Z = 0,
R,:ERO. This driving plezo-electric crystal will be formally replaced by

a unifora surface distribution of double-—sourcesl1 over this plane section,

llﬁ. E. H. Love, A Treatise on The Mathematlical Theory of Llasticity

(Camhridoe 1927) 183-189 and 304-307.

]
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2.2
and the strength of the double sources will ve some suitable function of
time after t = O and zero before t = 0.

If we smploy the phyaical r:omponenta12 of displacement ER’ {6’ {Z

121v4d, 51-52, 89-91, and 287-284.

-

in the directions of increasing R, v, and Z respectively and the corres-
ponding components SR? ge, and §, of the body forces per unit of mass
#hich act upon the material of the rod, thu dynamic elastic ejuations of

a homogeneous, isotropic material tuke the ferm

e, ,om . Jis a1 (3 ) 9°
- - (a" - b°) — —-'--b'"-—h-—o-—-(-——-l)o——-é'og
2 2 2 V3 215R * SR

s at JRRT IR 3R GR R" (90 ) az7
o ’
3f, (*-vHas e, fia s 1 (a2 y 927
—= - —~ - — —= |- — R — +« — { - 1v —51{, = & (2.1)
< 2 , 2.5 . 2% <)
at R 9% R 9€ IR R IR R° (g& ) aZ%]
2 . - ? 2=
i_.g_z. (32 bz‘ .Ji b.“!.'l_:_..qt._¢.l...i.. - £ .g
- T e = : 22 2|2z Z
ot kYA (i 98 4R RT 35 92°]
A I .
Q= (R%R) + ———
R 4R R 3 3z

where a i2 the speed of dilataticral waves, b is the speed of rotatlonal
waves, and t 1is the *time
These must holt at all points ~itnin the brdy of Lhe rod, that is

R <% Ro, if the rod i3 presumed o e ovithicoat £t or (tter defects,




2.3

and the solutions must be periodic in 6 with the period 2nm radiane
-~
Les. Z(R,G,Z,t) = g(R,B*&n,Z,t)] in order to be single valued.
Further, since nc forces are applied to the outside wall of the
rod, we must have the houndary conditions that the stress components
SRR’ SRB’ and SR7 vanish at the surface of the rod, R = Roo These

conditions 2re given by

3 a
AR (32- 2b2)A . 22 -53 0
P dR
.11 d L
_Sﬁ-bz[...&¢n——£—e-} » 0 (R'R) (2'2)
i [r 28 R R °
S 3 d
—B&nbz—fn¢‘iz' = 0
o az )

Now since the force actions produced by the driving crystal are
independent of © and have no component in the 6 dirsction, it is
desireble at the outset to restrict this study to those motions in which
Se - fe = C, and the remaining components OI’E and? are independent
¢? 8., In thie case the system of equations (2,1) reduces to

2 2
d da 1o 3 1l ey
“"g.é‘a'-(az-b2)-‘~b2——ﬂ—-~-2-¢-—2-§ﬁ .gR
a4 JdR RJR OGR R YA



2.4
2 2

3 - 1 9 3

—% - (8% b)) — - bz[— —R=— e —--]gz =8,  (2.2)

14 (8E.) g
» - - (R *
R 4R gn

and the boundary conditions (2.2) raduce to

4
EBB - (&2- 2b2)A . 2b° _EB =0

0 aR
(R=R)  (24)
.
AT 15 -
P ¥ A aRJ

Further, in order to study the tr:rsmission of pulses, it is con-
venient to take as initisl conditions the simple situation in which fﬂ
and gz and their first partial derivatives with respasct tc the time -
garo throughout the rod at the time t = 0.

If the componants; 5!{ and SZ’ of ths body force per unit of maas,
are taken to be zero for t <O and are assumed to be known after ¢t = 0O

throughout the rod; a solution of equations (2.3) and (2.4) is readily

obtained by the application of Fouriar integral transforustions. The
solution, subject to the assumed initial conditions, is unique, and an

axcellent account or the mothod is given by TitChESPShelJ

13E° C. Titchmarsh, Introduction to ¥he Theory of Fourlsr Intssrals

.

{Oxford 1937), particulariy Chapter X.
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2.5
Ne will employ the transformation indicated by the scheme
N oo
- =y i(st - yZ o
P(Ryyy8) = - Pz, €20 27wy (25)

(o] - 00
where g’is the vector body force whose components are some known
functions of R,7Z, and t, and E?is the transform of §: The components
of 3'aro obviously functions of R, and the parameters y, and s. Thias
integration process i1s assumed to converge for real values of y, and
any complex values of s such that the imaginary part of s is greater

than some positive number 5. In symbolic form this will be written

im(s) > 6> 0 (2.6)

~.

Slia : 24 :
Similarly for the displacument vector { > we will have the

transfornm, Gt given by
~e e

- > _
u(R,y,s) = \J E¢x, 7,0 €108t = v2) gqe (2
Voo -

~i
N

Now eliminating gp and gz in equation (2.5) with acuaticn (2.3)
we find, on integrating by parts twice wit respect tc each of the

variables Z and v, the result




b

&
o

|=8" + dY " ¢ 5 - — — R —jng - (a"D)ir—= = pp
L R“ R 3R IR oR
X 2 . (2.8)
1 a(Ru) N
- = bz)ir- uR" r"z‘ 82"2‘“—‘}1_"2 " P
R 3R ]_ R 3R OR

where it has been assumed that the components of g and its first partial
derivatives with respect to t and Z vanish at infinity as well as at
t = 0. This additional assumpiion ic¢ in essence a boundary condition
to which one is led by the nhysicel reasoning, that the finite snergy,
stored in this system by the budy forces durli:g sny driving opulse, must
ultirately beceme diffused throigh tie infinits roi 3o as io becoms
negligible as t >0 or 2 > Lo, Thus tre displac »nents, strains, and
vein:itiuve must =0 as t2e0 or 7 - - 00,

Similarly, regarding the system of e.iations (2.4) as the components

of a vector, we firnd for its transf:rm the rasult

i 28 (¢~ 20 )5 2 2y,
(2% — ¢ et E A (a%= 2 )1YWZ = 2
L OR R
(R =R) (2.9)
5 5y 0
tyd uy B = =9



Wwhen a solution of equation (2.8) for u is obtained which is
reguiar for R <R , Im(s)> b and satisfies the boundary conditions
(2.9}, the displacement vector-f*can be found by the reciprocal trans-

formation to that of equation (2.5), namely

= 1 ! - st - ,
g‘/.R;z;t) e | u(R,y,s) Ei(t YZ)dY'dB (2.10)
(2m) J J
~0o¥lT - 00
whers
v V6>0.

Although esjuations (2.8) and (2.9) can be solved for o when—g.is
any given ves*ur U 1ction of R,y, and s, we need only consider such a
vector p &3 wou.: correspond to the particular longitudinal piezo-
electric drive given the rod by the driving crystal. For this purpose
we must take E% = 0 and ;% = O whoen 2 ¢ 0, but undefined when Z = O.
It i3 much easier for one to make definite assumptions about p and then
interpret these ohyaically, then to deal with the singular body force

representing a surface distribution of sources. Consejuently, we will

Thugr, since the srly nou~rzero component of p is iIndopondeat o 3,

(‘3’;'\1823;‘1'\ (:’u‘?} has thae yery u_lgn_:;'g. ;'"':I"ti\'"”l‘l‘ anin? Lo




2.8

ugp = 0
(2.12)

+2rag(s)

‘zp © 9-(-2-1’2:_)-

However, this does not in general satisfy the boundary conditions given

S~
N
~0

by system of equations (2.9)
Since the systems of equations (2.2) and (2.9) are linsar in u, ons
can generaliszse the above solution by adding as a complementary solution

any linear combination of solutions of the homogeneous system of equations

2 2
'y a4 d 9
I_--z*bzrz"z-‘"“ﬂ“%-(az-bz)ir—‘z -0
L R R 9R 3R oR

(2.13)

-(az- b

2
1 a(Ru,) a9 3]
z)ir - “R + ..sz 'y .2.’,2 - Tmam  emm— R — % - 0
R 4R R 3R 4R

The solutions of this squation are those considered by Pochhammer’,

and of thess only the two solutiona

o = -n g (nk)

(234}
Yy = iYJO(hR)
%3. - "1YJ| (kR)

2.1
s, = () (2.15)

and the linear combinatiore thercof are regular at B = 0.
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In these solutions gj;(z) and LI,(z) denote Bessel functions of the
first kindlb of order zero and one respectively of the complex variable z,
14

G. N. Watson, A Treatise on the Theory of Bessel Punctions
(Cambridge 1944), p.40.

1/2

=
h = I_(s/a)z- Yz:] Im(h) = O
1/2 (2.16)

k = [(9/b)2- ,,2] In(k) 2 0

Two other solutions can be found by replacing the Bessel functions

and

of the first kind by those of the second kimd, but these are singular at
R = 0 and rust be excluded since the displacements must be regular at
R = O in order to satisfy equation (2.2) at R = O.

Thus, for the vector body force given by egquation (2.11), the most

general sclution of equation (2.8), regular at R = O, is of the form

w, = =Cyh J,(BR) = Coiy o, (kR)

o (2.17)
~2rg(s
QZ - -——h—é + CliYJo(hﬁ) % Czk JO(KR)

pas

where C1 aend C, are arbitrary nwnbers independent of R.
Substituting this result in equation (2.9) and solving feor Cl and
02, cne finds that the boundary conditions are satisfied if

v R 2 2 2
2:(a%-26%) v* (P v?) ) (v )e(s)

.,>b2ash2 A}i(h,k,Ho)

[ »

1

and

2 2 :
2% %) ¥ (2n) 1, (nR )als)
G = o

2

2 .2 . . :
wb T asn ;ﬂ;a(n,x,ﬂo)
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!

where
z.v ha

854005, R )= (k% YZ)ZJ,_/éhRO)Jy,ﬁf b s T (HE ) wém )

(2.19)
owzhkdy (hR_) y kRo)
By eliminating C, and C, in equaticn {2,17) with (2,1i8) and sub-

stituting the resulting values of U and v, into the reciprocal Fourier

2

transormation equetion (2.10), one readily obtains exprescions for the

displacements {R and {z. In this connection, it is conveniant to write
t - ’y
>R ®RC

§z = 6zp * $c

where gZP is the displacement produced by the particular solution of (2.8)

(2.20)

* and fRC’ and §ZC are the components of displacement in the complemantary

solution which contains the influence of the boundary conditions. It is
appuarent that gZP is the displacement that would be produced if the rod
were unbounded (Ro =00 ),

Upon carrying out the above procesa of elimination

. 44 4a flaoy that
n,; 11 1l clear that

g
P
o
2

1 2e(s) E—i(st - vZ)

bzp = 3 5 ifi9edn
) p ash

{2,210

v>Xs>0



e

[ il
.

I3 3

2.11
X d% 2 0o
2(&2- 2b2) g(s)ds

gnc"

(2")21 s
-~ +iT - 09
Qi v2) J, (nR) J, (kao)nsz, (kR) J, (nR_J] 5—1(=t = r:)zw
bzh h,%,R
R AR (2022)
o+l oo
g ‘2(32‘ 2'02) g(s)ds
B (2")2 s
~00 +{ T - o0
. Qi v#) JolbR) U, (kR )-2nk |J (kR) \J {hi )] g-i(st - rz)zdr
pabzhz,fx/&(h,k,ao) L

In equation (2.21) the integration over y is readily performed in
15

terms of residues. If Z > 0, we may by Jordan's lemma™“ consider the

lSE. T'. Whitteker and G. N. Watson, A Course of Modern Analysis
(Cambridge 1940), p. 115.

contour of integration closed by an infinite semicircle in the upper
half of the y=plane, and the value of the integral is the sum of the
residues at the poles in the upper half plane. I squation {2.21) is

written as
oo T po°

= i g(s)r 1 1 -}e-i(st - rZ)
Sz " o2 ~—| ’ rds

J P8 [ ye + s y'a-g]
_m-}l:‘c - O
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the svaluation by the residue at y = % gives

0o+tT 4
» e— e Y. | 4
ZP 2l . psa
~00 4.0 Z>0
Similarly, we find
cotl T
=is(t « L
A -1 g(s) g ~4o( a)
S2p = s
2 psa
-0+ T
z< 90
Now, since the tensile stress along ths axis of the rod szz is
given by
S a
42 o (s% 2% + 12 % (2.23)
P YA

we find, by assuming the validity of differentiation under the integral

sign, thet the tenolle streas produced by the particular solution, SZZ?’

is giver by
ot i T
1 A
el =l
Sgzp = T g(s) € Bt a ) g (2.24)
P2
J-60+L T
Now, taking o
g(s) = | P(r) €L g (2.25)

o
where F(t) = O for t < 0, we have ths ususl result for one-sided Fourier

traneformalé,

16

E. C. Titchmarsh, Gp. Cille, 4 = 5

P e et P . Y
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o0+t T
] P(t) t >0
—_ g(s) €715 45 = (2.26)
an 0 £ <0

o+ T

and
S,up = O [Z]>at
(2.27)

S - F{t izl |Z] <at
7 A

Thus, the primary disturbance gensrated by the singular bcdy forces
is a plene wave of dilatation propagsted along the Z axis with speed &
and a shape determined by the functional form of F(t) which we will leave
unspecified for the present.

The contribution of the complementary solution to S g DAY likewise
be computed by substituting géC and gRC into equation (<. 43) and differ-
entiating under the integral signe. This contribution SZZC is a function
of R, and the recsiving crystal will respond only to its average value,

Since all displacements are lnuspendent of 6, we find, by averaging S,,

over a plane section normal to the axis of the rod, the result

RO RO
~
_ 2 20(a%~ 2b7) [: ] 2pa ag,,
S, =—3 | S, RdR = g —= RdR
7 2]
77 % 72 =
: o 0

Substituting the vaiues of QRC and 520 from equation (2.22) -ng

performing the integration over R before thoss ov. > y we obtain
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oo+t T (0
- (1 - 2b2/“2)2 W2&a3g(8) J,(hn ) J.(RRO) e-i(at - y2)
522¢ * o2 n Atien ?‘ dyds (2,28)
2n)"1 b*h’R ,k,
JogoslT e ot o

Since SZZP is independent of R, it is obvious that the average value of

the entire stress, EZZ’ is given by

Szz = S2zp * %220 (2.29)

0

Prom equations (2.22) aand (2.28), it is obvious that the comple-

wmantary solution vanishes if az L] 2b2. This situstion correaponds to a

zero Polsson ratio,o; since

(<3
(1 = 26°/a%) =

(2.30)
l -0

An actual material having ¢ =» O wou.d be highly unusual and have
.interasting uses. It would not violate the conditioans of physical sta-

bility. Rayleighl" has poiuted out that an isotropic material is stable

l71..ox-d Rayleigh, Proc. Math. Soc. of Lendon, 17, 4-11, (1887)

if its Poisson ratio lies in the range 1/2x g2 ~1. When o = 0, it ia
obvious that no reflections of the primary dilatational disturbarnce
considered here are produced by the surrouniing walle. Such a material

would be extremely useful for making certain types of solid acoustic

deiey lines.
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The evaluation of such integrals as occur in equations (2.22) an@
(2.28) cun be carried out by a number of different procsdures. Since
the integrands are even functions Bf h and k, they are singis valued
functions of s and y. In addition, they are regular for Im(s) >3 >0,
O=R= 86, and t< 0. Thus, the integration over s is sero under these
conditious. %mt?O,OfRsa,w.mNQMManrquufw
Ia(s)< Texcept for poles which are all located on the real axis of the
8 plane when ¥ 18 real. In this case the integration over s 1is obtained

[ e

as Lhe sum of the residues at these poles. 3ince the egquation
Ay (hk,R ) =0 (2.31)

is actually the frequency wave-number condition obtained by Pochhmer3
for the normal modes indecpendent of © for the infinite rod, it follows
that this residue evaluation will express the integrsl as a series of
these normal modes. Each of these modes musti then be integrated over y.
These procssses will converge very slowly and are incapable of showing
the number of reflactions which have given rise to the energy arriving
at any given tlme and place,

A second approach is to expand the iitegrand in a series, convergent
for Im(s) > b, and integrate term by term. This possibility is a conse-

quence of the reslations

Im(h) > = Im(s)

(2.32)

i pi+

In(k) > ¢ Im(s)

wiiich are readily obtaired from eqjuation (2.16) and are valid for all
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real values of y. In this process, a type of series can be found in which
the various types of geometrical reflacted paths appear as separate terms
di.stinguished by appropriate changes of phase according to the increased
length of path. This method is pursued with some success in Section 4, but
the method is much more successful in jectlion 3 in a similar protlem
involving pulse transmission in a plate.

This problem of pulse transmission in a flat plate is much more
susceptible to formal integration and is to soms extent an approximation
to the present situation. Since it will serve as a guide in the more

difficult problem of the red, it is considered next.




3. 7THE PROPAGATION OF AN INITIALLY PLANE DILATATIONAL PULCE

THROUGH AN INFINITE PLATE

As 8 parallel investigation, let us consider an infinite plate of
uniform thickness, Zko, which, if described in rectangular coordinates,
is bounded by the two plane and parallel surfaces X = Ro, and X = —Rc,
and extends to infinity in 211 directions perpendicular to the X axis,

We will assuns a uvhiform distribution of double sources, whoss strength
depends on the time in the same manner as in the previous: axample, along
the infinite rectangular strip defined by 7 = O, |Xi,ﬁ5-R°a

The effect of the initially plane dilatational pulse, and the corre-
sponding reflections form the stress—~free bounding surfaces, can agein be

raadily studied by calculating the aversge siress SZZ on another infinite

strip Zefined by Z = constani and lxl:; R0 whizh i3 varallel to the first

strip containing the double sources and lccated a distance, Z, away.
Proceedi.i, ‘n tLhe same manner as in the case of the infinite rod,

the dynamic elastic enations, when expressed in rectangular Cartesian

coordinates, take the form

5%t TR oF S L b

B2 0 2 ,

5 = (7= p7) —~ - 2 2€x'5x

5 ax [ ax® ev® a2

fy o g 0 L[ JZ-I s
- (8- b)) — - b o=+ —5if, =5 (3.1)

2 . 2 T3 T3y T Yy

it 3y ax® ax? 8z

ae . a8 o & 3

.....?.é. (&‘ b?') e b2 e PO — s‘ ;

a2 g2 L e st et F
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ax dY az

for an isotropic and homogeneous solid, whore{x, {&, and g} are the
components of displacement, and gx, gy’ and gé are the components of the
body forées per unit mass in the di ‘ections of increasing X, Y, and 2
respectively.

Since the planes i = :Ro which bound the plate must be stress free,
the boundary, conditions 5 =S .= S . = (0 must he satisfied on thsase

XX XY X2

surfaces. These way ba written as

Sxx 2 2 2 9§x
—= u (a7= 2b7)a + 2b° —= = 0
P aX
3 [af, af
__Xz-bZ__Y_*___X_] =0 (X-:Ra) (3.2)
I LBX \'3’1-1
S 3, of
2 , 2|z »x.l <o
¢ 39X aZ |

where the symbols p, a, and b are those wvreviously d=fined.
For the present circumstances, we wiesh to consider the case in which
- ~»
gv - EY = 0, and all of the cother components of {, and g'ara independent
of Y. This is the two-dimensional cese discussed at length by Ray]eighh

6

and Lamb”’> in which the above genarzl ejuationa reduce to the system
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.2 2 -2 2
i_é':_az?_&_bz ".fxr_(z-hz‘.a__f_z-_s
at? ax* az” axaz %
(3.3)
2 2 2
62; 3 gz 3 gz Fy
2 2 2
—32 - b — - a 7 - (8% b%) -—— = ¥,
at 3% 3z 3X32
with the boundary conditions
a E14
3 , 95z z
it a (32- sz) =0
o ax 3z N
(X - R ) (3.4)
2 0 &y NCI I
o 3z ax

Applying the Fourier transformations indicated by equations (2.5)

and (2.7) to this system with the assumptions g, - §

L =0 for t< 0,
L

andifx, {é, and thelr first n»artial derivatives are zerc at t = O, one

obtains the transfcrmed system

du 62
22 2 2 2 Z 2
\by - 8 )uge- iyta - Db -a —T35 = py
aX ax
2
. = 5 du ad
22 2 L .2
(ar-a")uz- ty(a- b°) —= - ;Z-pz
3X aX
with the boundary conditions
g 2
e -+ ir(az- 2b“)uz =0
ok
4+
, Ou 2 (X = =
h" =emm— 4+ iybTu = 0

(3.5)

) (3.6)
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Making the assumption

=0

~2rg(s)a

p8

Py = (3.7

corresponding to equation (2.11) of the previous analysis, we find that
the system of equations (3.5) possesses a very simple particular solution
independant of X which does not in general satisfy the boundary con-
ditions (3.6).

This solution is easily seen to be
uyp = O

2rg(s)

apah2

Yzp ©

To this solution we mey add any linear combination of solutions of

the homogeneous system of eguatiocns

2
a3z a4 5 du, ~ @7 u,
(by~- a“')ux - iy(a“- b°) —=£ - 2« 2‘ -0
X I
a 2 (3.8)
(azrz— az)uz = ir(az-bz) —35 = b2 —Z -0

3x axr®

Since these equations ars each cf the second order with coefficients in-
dependent of X, four linearly independent exponential solutions can be

found. + is convenient to write these as
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w. = 1n €DK wy = iy g X
agy - _{hE-ink u, = 4 € ~inX
(3.9)
ugy =t gixx iz * -1g DX
uy, = €T u, = k€ HE

where h and k are given by equation (2.16).

Thus we have as a general solution of eyuations (3.5), (3.6), and

(3.7)

L
u'l - mg CmuXm
- (3.10)
L 2rg(s)
iz = Cotzm *
ms +ash

where the four numbers Cm are arbitrary but independent of X.
By substituting this solution into the boundary conditions (3.6)

and solving for the numbe-s Cm, one finds

113" fa") ﬂ—-&(—”—l (e )sin(kR

C, = C e sh
[(K - ) coa(hﬂ }sin(KR Yol hk sin(hR Ycos (kR )J (3.11}
2 .
1(1-762/2%) 5‘1—3&—2 (2rh)sin(hR )
~ gb Sh
C, =» = -
3

b 2 2.2 . 2
(k" =") ('os(hﬂo)sln(kﬂo)*w hk sin(hﬁo)cos(kﬂqﬂ

[,
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3

Upon substituting the values of ug and w, thus deiermined into

equation (2.10), it is convenlent to write
bx * Sxc
where §,, is again given by equation (2.21),

~o0+4+ T roo
{
g - ZSl-ZbZZa22
XC (2!7)21
S soiT Y00

- -1
. ~ 3 S
L(k'z-y'z) sin(hx)sin(kRo)‘zy‘ sin(kx)sin(hﬁoﬂarzg(s) E

P Ezx»‘* +§ 7¢ (3.12)

{st—+2)

® .
[(kz-'r‘2 2cos(hﬂo) sin (kRo) *L-,rzhk sin(hRo) coa(kﬁcﬂ pbzsh

T>6 >0

and

Poo-{-r...c o0

2L |
¢ .z2(1-207/a7)
9
Z2C (En)z
Jogo+e T Vo oo

[}kzayz)cos(hx)sin(kﬁo)»2hk cos(kX)sin(hRoi}arjg(s)E

dyds

(3.17)

~1(st—-2Z)

drda

Ekz—-{z)zcos(hi{o):si".(kﬁq)*l:r"hk sin{hR )cos(kR_J],
e O OJ

b25h2

.6

Here 1t is again found that the complementary part of the sclution

-

Sxe

- . 2 2
and gvr ars zerc when the Polsson ratio 0 is zero (8" = 2n°).
L'

general similarity to equation (2 22) is rather obvious.

The
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In rectanguiar coordinates the tenslile stress component SZZ is given
by
Spo 5 o af af
B o (a2 2 Bl & (P (3.14)
0 dZ YA at

Since, in the pressnt example the displacements are inde: ndent of Y, the

average value §ZZ of §,, over an infinite strip defined by 7 =~ constant

2Z
|X|<=< R_1is given by
o

R R
I 1
- i v’ W, elat- 29 [ 75
S, = -—— S, dX = — ——-dx0——'—-—~—— 5, {3.15)
- £e 2R 3z X |
0 o - Xa—R
-R -R
[0} C
From this expression it is easily shown that
S22z " Szzp * Szzc (3.16)
where .
{.ooaut‘ {‘00
§ - -"”‘2b2 1&2\?.
22 (2m) 4 J
e+l T V00 ]
-1(sty2
yZag(s)sin(hit )sin(kR ) €
M N I 7 ——— dyar (3.17)
[Te" ) cos(nR_)sin(kR )*ly“hk sin(nR )cos(kR JIR b A
i (o] (o] [&] O_J (o]
T P66 >0

and S_, . is given by sintion (3120 )
LLr



Since the integrads in eguaticns (3.13) and (3.17) ars even
functions of i and k, they are sirgle-valued in s and y and permit an
evaluation in terms of the residuen at the poles which appsar due to
the vanishing of the demonminators. For t <0, {Xl SRo' the integrands
are regular for Im(a) > 6 >0, and the integral over s is gero for all

real y. Thus, =0 fort<0. Port >0, |X|< R,» the integrands

Sa2c
are regular for Im(a)< V except for poles which occur on the real axis
in the s plane for real y. The vanishing of the bracketed part of the
denominator in these expressions is the freyuency wave-number condition
for the simple harmonic modes of the even type discovered by Rayleighl’,
and the evaluation by residues for ¢ > 0 wiil resuli in an expression
in terms of these normal modes., This process wiil be quite complicated
and is not capable of showing what kind of geometrical nath is involved
in any part of the disturbance arriving at a given place at a given time.
This pro:ess vacames a practical expedient in the limiting case

R°—>O, as all of the poles due to the simple harmonic modes dagenerate

into a simple pole. Letting R ~>0O in ejyuation (3.17), it reduces to

raﬂrt.(w 22y B o o HiEt=E)
- -1 | 12(1-20%/a%) sy “ag(s) € )
Lim §,,,, = ~——= | m—— > dyds 13.18

(/. a’)‘?(‘r U_‘-/o

where Co is the classical vselocit of longitudinal waves in a thin fist

1Q
S

plate™ wund Is given by
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o 2 (3.19)

13, E. H. Love, Op. Cit., p 497-498.

This integral is readily evaluated by the same steps as empioyed in
connectlion with the integral in equation (2.21) to obtain

Lim S, = (a/C)F(t - [2]/C ) - F(t ~ |2]/8)

R3O0
o

which when combined with ejustions (2.27) and (3.16) yields

Li.mSZ

= (a/C)F(t - |z]/C ) (3.20)
RS)O

Z
Yo will later seo that this is an ssymptotic result valid as (Z/2R)—= %
Por ‘he present, let us simply note that for 1/2 > o > -1, 52>C§ >2b2
and thet at 0" = D, a2 - Ci = 2b2. Thus, for 0 » 0, the disturbance in
this limiting case reduces to the original dilatational disturbance.

For the practical study of the transienis involved in the cosple-~
mentary solution, a different approach is much more successful. By
expressing the sinss and cosines in eguation (3.17) with exponentials
i(h+k)Ro

and multiplying numerator and denominator c¢f the integrand by &

it cen bsg put in the form




T

oo4+1 T oo
(1-202/8%)>
- 3
~c0+:t T - o0
21hR'H’ 2ikR | ~1(st-rZ
')-3u2¢n{n\ i 1 F_. Q ( # )
=T RENE s o=
’
wo3e v 1.
e ol\l- wl)(.‘ #2)
where
i =
fjl 21KR !
"’1 + wz » _.i 6 = € I
1
<
" Zi(h+k )R
WV - . 4
12
f, = (k2 - Y2)2 + Lyzhk
FY
and
. 0 .
£o0 (k% ) - i

Froin the idantity

3.10

(3.21)

(3.22}

-~
a2
.
N
e
—
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and the seriss expansion

which is uniformly and absolutely convergent for jwj < 1 it is easily

found that
o n+l n+l
- Z o S (3.24
- o <4y}
1 =r =
(l«wl)(i—wz) n=C ¥y

and this scries 1s uniforaly and absolutely convergent if lelAi 1 and
[ ] < 1.

From the ejuations (3.22) and the algebraic identity

" n+l - n+l n/2 (e L l)g
o) ALY - - .
1 < .AE-: = el (leZ)q(wl " w2)n 2q (3.25)
W o= v, g*0 (n=2q))1y!

which is valid when n 1s a positive integer or zero, one readily obtains

by collecting like powers 5! lie axponentiala Lhe result
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where
<n
%n q
m 2 (nyen -m—;)t(-1)
Pt - 12 = G )R (3.27)
1’)11')2 g (nl—;ﬂ(nzﬂ)i Yyt

when Nys» Mo and m are positive integers or zero and m does not exceed
the larger of ny end N,ye
From the obvious elimination between sguations (3.26) and (3.24),

the result

o<
1l (5] n 21R (n,hen_k)
- ___4; Z, £,/£,)(-1) 1eg e

(1-vwy ) (1-w) n,=0 n,=0 u (3.20)

is cbtained. Then multiplying by the appropriate factors end collecting

like powars of the exponent.ials, w2 have the expansion

& A\ A ;i,.-..J,\
\L = "lll (l — V;) nl nz"\l
1 n 2iR (n, hien k)
= i : 1o Ll
Ta. +h \ f i I = o D S W ‘/ VoYY \‘,- [ 2 S
inyran) ¢ (1, /1 ) (ng nZ{J t:“\fg,fl;\ 1; (3 29)
& 1

with tne stipulstion thal the leading tarm (nl-n,nﬁ) has the value unity.
The absolute converger:s of these double seriss ia easily studied

with the ald of & comparison gerles. 1t is obvious that the terms of



312
the series (3.28) are in magnitude equal to or less than the corre-

sponding terms of the double series of positive terms
5?\’_

i f_' s"2'("11”12”(‘)" n,+n,~29 2iR (n, hen_k)
Ve ,_,z ‘fz/fl!lz |€ or 1" 2

-/'\ IS

19

Forming the diagonsl sum 7, ‘Jn, of 211 terms in this series such that

19w. L. Perrar, A Taxt-Book of Convergence {Oxford 1938),p.138-1L5.

pp * n,= 1, it is easily shcown that

o4 D :
1 - (vlm"- v2n ')/\vl— v2)
V =
n (=¥, )(1-v )
L <
where
. . 2ihR . 2ikR
Vit Y, \zz/fl) € o| + (fz/fl)e o
24hR 21kR |
R R ]
Thus, since
b
Lim V_ & == o ¥
nyess s {Levy ) {l-v.)

wnan lvll <1l and jv,} € 1, it is ciear that 1re series {1,22) is abso-
<
P i 4 .
lutely convergent if {v,{ < L enz jv,| < 1. Since the amaller in magni-
& '

tude +f v, and v

1 5 13 Aiways negietive, it is obvious that these two cone-

ditions ere equivalent to (l-v, j{i-v ) > 0 or that




1>|r2/r)|[£ ~2R Im(h) 6-.’?!101’m{k}] " e—motln.(h)olm(kﬁ (3.30)

is a sufficient condition tor the absclute convergence of the series
(3.28) and {3.29).

In order to use the series representation (3.29) over the range of
integration involved in eyuation (3.21) and integrate term by term, it is
desirable that it be uniformly convergent over this ranve of integration.
It is eusy to demonstrate the uniformity of its absolute convergence for
Im{s) > from the inequality (3.30). It is evident that the exponantials
spnearing in this expression have an sppropriate hehavior from equation
(2.32) when R J. but the guantity ]fz/flf requires some further ex-
anination.

From equation (2.16) it i3 readily established that
= 4 o ? .
YL = (b2.k2 _aZh‘.)/(EQ_bZ) (B‘BL)
and substituting this result into equation (3.23) one finds

£y = L(l—J)z(h—k)(h-—mlk)(h-.nzk)(h-m3k)
(3-32)

£« 4(1-0)%(hsk) (hem ) (hem k) (homk)

where m, @, and m3 are the roots of the cublc equatlc

s ~32(l*"),"'(1—0'; -n —0'2/(%@2 - 0 (3,33)
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Investigation of the roots of this eguation for finite real values
of the Poisson ratio O reveals that there is never more than one positive
real root. If mn is taken to be this root, it is found thst m1> 1,
Ré(mz) £.0, and Rc(m3)$. 0. When 0 = 0, 311 of the rootz are resl, but
m1_> 1, one root is negative, and the third is zero.
From the definitions of h and k, equation (2.16), it is readily

aptablished that
Re{k/h) 20 (3.34)

snd since m24m34 ¢ and mzm3 20 it follows that

(hew k) (hem,k) _ (n/k + mzm3§/h tm, e m)

P (_l

(h-—mzk)(h-mjk) (h/k + mzmjk/h - my - mj) -

Consequently, from the equations (3.3?), we find

lh*k"h*mlk
h—mlk

Now with the aid of the sguations (2.16€)

{52/ 5| =

h-k |

l a2 fhek|? a2 ([hl+lx[}?  a%E? ({el/a+lyieis|/orly])?
TSNS H S < = -
h-k &2~b2 Is!z az-b? ib!?' s;z—b‘z ls|‘2
or
lhok‘

a+b | Zabiyz ‘]2

Bigei {1 5 cecmn

!h-k! Cheb L (asbjisij
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Similarly
weak|  nemkl® a%? fnemkl? . 5% (iny lom lk))*
h-m, k Ihzomikzl (mi e )laz-bg 2] (mlz‘a2 2)'82—C2 2‘
or
. ) [ A(ml*l)abirr]:"
h#mlk": a“bz(‘sl/a*irl*mllal/b%nllrl)z (mlaob) A {mla*b)[a] i
h-mlk g

(m3a-0%) | s*-c r | <m1a-b>*1_c§ Jlﬂl;-

where CR is the speed of anleighzo surface waves and is the positive

2ULor-d Rayleipgh, Proc. Lonic: ®:. . Soc., 17, p. 4-11 (1387).

root of

2.2

o (m7-1)
C; = —E—El__—i' 13.35)
ml-(b/a)

Since ml‘> 1 >b/s for physically real values of the Poisson ratio, it
follows that a > b > CH for physically real situations.

Collecting the several inejuaiities, it is evident that

-)ab =
Fa+b] [m,asb] [1’ (a*0) ] [ aob L
le,/e = = (3.36)
' g-b) lm a-b 2 2
i L= cg 15

a
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and that (fz/fli {3 thus bwunded excent a3 y/s > Oor :l,/C As &

R’
function of y/a, r:/tl has a double pole at ©0 and simple poles at :l/CR.
I1¢ Im(s) > 0, it follows that ifszll is bounded so long as y is
restricted to any finite range of real velues. The right-hand side of
the inequality (3.30) is consequently bounded over all wvalues of Re(s)
and real y when Im(s) >0 and R, > 0, because Im(h) > 0, Im(k) >0 and

hoth are functions which vary as y when y—oc or whan y and Hs(s) —» o<

together in such a way that y/s=> C and C< b, Thus, the right-nand

side of the inequslity (3.30) has a least upper bound M which is a funetion

cf Im(s) but uniform over all values of Re(s) and real y. Since Im(h)
tnd Im(k) are functions which vary as Im(s), the right-hand side of the
inequality — 0 as Im(s)->o0o for all values of Re(s) and y in the domain
considered, and the least upper bound M~-> O as Im(s)-»oc., Consejuently,
there exist: a positive number & such that M < 1 for Im(s) >o. It is
thus evident that the series (3.28) and (3.29) are uniformly absolutely
convergent over the domain of integration in eyuation (3.21) for
Im(s) > & >0 The number 5>-#0° a3 Ro-}O,

Substituting the series (3.29) into egustion (3.21) and integrating

term by term, one {indis

..

. S ¢ i

5 £ g e Nt L% ‘.n,_,,_'..,:
LES nl-O % o,
“~ LA
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where

oottt T o0

20-2%/e%)7

C (R,Z,t) = (-1 ———y—mee
nlnz (2") Ro
o+ T - 00
y / Pl( , )r2“3g(,)6‘1(3t-‘rz-2ﬂonlh-2!ion2k)
e[(n.+n. )/t + (n,-n_)/f £/t )  drds
[ 1 77 172 2] Ayt 2 A bLhB (3.18)
T>5>0

and the inversion of the order of summstion and integration is justified
by the uniform convergence of the integrals involved as well as the serles.

Elementary inspaction of the exponentials occurring in these integrals
leads to the identification of each with the net contribution of all the
waves which have traversad the thickness of the plate n1+n2 times, ny
times as a dilatational wave and n, times as a rotational wuve. This
identification will be more completely justified in terms of the group
transit time to be associated with each such wave group.

The intaegrale in equation {3.38) can be nut into a much mare umaful
form by means of a ciicnge of variables and cartain contour deformations
Fxpressing the integrands in terms of the new variabis y instead y hy the

transformation squations

u'- - -'A
Y = vy fl f]u
how bo N P (1.39)



3.19
and the group-transit time 5 agefined by
Yl]n2
t " YZ v 2Rnh o+ 2R Nk (3.40)
12
the ablve integral becomes
oo+LT
C 2(1-2b2/a°)?
(R _sZ5t]) = {=l) "1 et
n.n,' o 2
12 !
(%)Ro - oo 4T ﬁ
~is(t—tr n )
_ /3 Dl _ T rag(s)€ _ 1"2
el{n,+n)/ £, » (ny=n,)/ £} 1 (£f,/ £, )=———— dyds (3.41)
[ 1 2 1 1 < 2 nln2 2 1l bLI'IBS

where I; is the straight line (arg y = -arg

corresponds tc the real axis in the y-plane.

(2.22) and (3.39) it is obvious that

., 2 =2.1/2

ho= (1727 - y7) /

= (1/b2 _ 2)1/9

7 - (12 B ~)2 " A;Z e

From equations

Re (x) = Q

Re (k) = O

Mext, we consider tne deformation of the contour I into an

(¢}

8) shown i Fig. 3.1 which

(2.16),

(3.42)

ew contour

is real ard
2

3 of varied

11 wnich iy chosen such that the group-transit time ¢
n,n, nyn
nueitive 2% 10 celoie on the contour.  Since there are pole
= 5 S . S . o i - ¢ Ix S
evs e e Y T vraneh rofntys at v s =(1%) and coubrined voles and

-y
i
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branch points at ; - :(l/u), it will be convenient to introduce a cut in
the ; plane extending from ; = 1/a out the positive real axis to o° and
enotnher cut extending from ; = -1/a out the negative real sxis to -oo,
A1l of the singularities lie on these cuts as shown in Fig. 3.1 and the
system of equations (3.42) is valid throughout the plane cut in this
manner. This process of cutting the planc selects one shest of & four
sheeted Riemann surface. An alternative definition of the shest selected
is the conditions Re(h) 2 O and Re(k) 2. O.

The construction of the required contcur presents no very seriocus
problem as thers ares never more than two roots of equation (3.L0) in ;

consistent with equation (3.L42). As equation (3.40) is an e,uation ex-

pressing En n e s function of ; it i3 convenient %o define a recipreexl

12
relsticnship expressing ; as & functicn of En .. when Zﬂ 3 i3 real.
_.1‘5!2 bY _:L 12
This relationship will be expressed as A (t) and will be defined as

12
the reot lying in the upper half of the y plane when these twe roots are

complex cocnjugates and as the root with the smaller magnitude when both
roots a~< real. This provides a unique and continuous transfermatica

v 5 1 = -—>-— 7 { i
from tn.n to y for real values of tn - ARO[lnl/a) + (nszz] It is

12 14 . =) - =
desireble to think of real values of y (t) as lim E; (¢) + 1 ?J
n,n, g»olinn,

-~

becauge of the cut-plane.
From the ejuations (3.42) i{ is obvious that when y is in the upper
half-plane and much larger in magnitude than 1/e or 1/b, Ak AJ-i;‘

Applying this result to equ-iion (3.40), it is obviocus that when Y and ;

are larze the asyuptotic result
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7 (t)Nt/[Z - 21R0(n1¢n2ﬂ {(3.43)

172
is obtained, and, for the corresponding values nf h and k, the similar
exprassion

hwkw?,/[iz . zao(n]_m?)'] (3.44)

is obtained.
For large values of t the roots sf auuation (3.40) are thus complex.

- - e .

1f we denote by y (t) the complex conjugate of y (t), these two
0N, n,n,

numhers are the two roots of equation (3.40) consistent with eguation

(3.42), These roots decrease in maegnitude as t decreases through real

values and become real and egual at a value of t which we will denote by

E;on when the correspending resl value of ; lies in the interval -1/a <
12 —

y~:il/a. Under these circumstances we may obviously itake IZ - as the

12
locus of v (t) as t decreases from +oC to {0 and tne locus of
rifs D N,

v (X) as t increases fromt _ to +o0. At the point where these
o u) s

tvc loin, it is obvious that Eﬁ = must hoeve a bend point minimun as ;

12
varies in a continuous manner. At thls point we must have

dt. =

Nyt rﬁ a,

1- “ 7> 1 ~i= ~ / XA
o =l - & e Fly 20 {3.45
dy 5 k.

or
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¥liminating 7> with the equations (3.42), this takes the form

y 2 _ 2 "
azlﬂnzi/ T{)ml] 4(2/230')2 - bz[[(nlk/ h)on;I +(z/2ao)j =0 (3.46)

This expression is obviously a quartic in the ratio (h/ k) and can
be shown to have only one real root (E/ E) 20 and no pure lLuaginary rocots
for all rsal values of (Z/ZRO) ir nl,{ 0, since 32;> b2. Since it is
easily established that the left-hand side of eguation (3.46) changes
sign in the interval 0 <(h/ k) < bya, it is apparent that this positive
root in (h/ k) lies in this interval, and this must correspond to the
minimum group-transit time Eoln as it 1s the only root which satisfies
Re (h/ §)23-0 which is valid thioughout the cut plane.

Since it is easily established from the equatiocns (3.42) that

-2 bz" QZ(E/ E)?

——— (3.47)
a%2[1-<-'5_/ x?)fj -

it is epparent that ftor Iy § 0, the contour described above crosses the
;eal axis in the ; plane in the interval -l/a 42; <1/a and thus lies
entirely within the cut ;-plane. Further study reveals that at this
crossing point y has the same sign as (Z/Zﬁo) and that as (Z/ZRO)'~%'0°,
(n/ k) =0, and y —>1/a.

The rase n, = 0 requires further study which is esasily carried out
for equation {(3.4i€) simplifies to

-

= 2 D ? ‘ :311:3 - »
(B/ ©)° = {b/a)* ~ (1 - v"/a%) (2/2) (3.L8)
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Since a > b, this will have a root in the intervai b/a 2 (h/k)> © only

it
o (o/a)? 5
(z/zno) ey s e O (3.49)
1 -~ (b/a) v

and from eguation (3.47) the corresponding value of Ys ;2 n is given by
2

]
2

Yo n, = (/Y@ RIL + (2/2R,) (3.50)

-4

Substituting this into equztion (3.40) the corresponding minimum group-

transit time Zz - is pivern by
2

(3.51)

11/2
o« an) [22 + (201 )2]

on o
2

Fhan By & O and the inequality (3-49) is eatisfied, the contour
defined ahove in teras of fne complex roots of ejyuatirn (3.40) consistent
with the ejustions (3.42) is an acceptar.e contour us it crosses the resl
axis in the interval -l/a.<:;-<.l/a. Thia contour is easily shown to be
a hyperbole,

When the inequality {3.4,7) is reversed, equation (3.48) for (h/k)

sl

has pure lasginary roots wh.ch, when substituted into ejuation (3.47);

ghow thatl the nyperbolic contour would crosses the real sxis in the interval

2 — y =
1/a" < Y2<: 1/02 and would thua crogs & cut in the vy plane. This must be
avoided by & detour arcund the end of the cut involved. For (Z/ZRO)
positive, this means & detour around the point ; » 1/a and is readily

rceomplished.
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3.2
Instead of crossing the resl axis at the double root point given by

equation (3.50), t is allowed to decrease below the value of Zg o 8iven

2
by eguation (3.51) until the path cof Ve i (t) now real has followed along
2
the top of the cut to the polnt 1/a, and the path of ;: o (t) is then

2
followed along the bottom of the cut to return to the double root point

aa t goes through the same valnea in reverde order. The resulting contour

is sketched in Fig. 3.1 as the contourI!:n « It can be defined as thm

limit of the contourizzﬁ: as nl—> 0. For fhis indented contour it 1is
obvious from equation %3?&0) that the minimum values of t and ; are given
by
{Z n, = (Z/a) + 2n2R0(1/52»l/u2)1/2
“ (3.52)
oo - /.
f'o nz l/.a

which is valid when

Z >
(_/ZnZRO)__ tAn GC

The minimum group-transit time is in this case not s bend point minimoum.

contou I’ ; h L of a e limi B
The co rIgo may be thoughL of as the limit of In~n

as n,—» 0
,x 1
12

and n2-+(L and it obviously runs from « &0 to 1/a along the top of the
cut Around the point ; = 1/8 and tack to ~ & along Lhe bottom of the cut
when Z > 0. It is obvicus that the eguatiuns (3.52) hold for this case
for all Z > O.

The process of deforaing the orlginal rontour Il to the now contour

I11 n. CAn thug be accomplished without passing over any singular points in
172
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the cut y plane. Further it is possible to show from equaticns (3.36)
and (3.43) that the integrands vanish as [1;1(2!11’2“2”3) E‘lel]

wher y —5 oo along any curve lying between I‘é and Tnlnz and m is a
positive number independent cof I;l vhich 1s never zero except when

" =" o - 0, Thita tha intecrula aovar anv survea Ininin T and f
. 4o 202 g integrale over ony veg Jeolning a

ny v ong, hitg,, the integsy ar any cur 2 i, & nn,

at ©© are zero, and the integrals over ;: are absolutely convergent at all

of the intermediate :;t.agos of the deformation pre:esa. The only :
difficulty with this procesa 1ies in letting “he contours I:_\o and ‘

[; touch scme of the singular points. These difficulties may be

”

~

treated by various limiting msthods, and will be considered lster &s

they occur in only & finite number of terms for finite values of
.
_3 (z/2R).

Having thus 2rrived at the expression

00+ (T F
iR
C , S o L1y 2(1-2b"/a) , l
R ,2,t) = (-1)"1 ~——m——
M2 & (2rv)2ﬁo ! | 5
Veoo+ TV Lingn,

_ _~is(t-t )
e 3 B, = s = 3 F Pl( pip o e
i(n,»n,)/ £, ~ ({ny-n,}/ f:} ¢ £, ] =e==— dyrds (3.54)
112 1 12 2 n,a, 2 i bl‘th

in which L~t,1 . is real at all points in the range of integration, the
- l 12
oraer of integration can be reversed and the integration over s is easily

accomplished. From equation (2.25) and (2.26) it is readily found that
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. r oo+e T t
e 1 {-iet
g(s)ds = F(t)dt = G(t) (3.55)
2 u,-ia
-ﬂrl:t (-

By applying this result to eguation (3.54) the single integral expression

° (122 /a?)* f
(R ,2,t) = (-1)"1 ——————
By Sp © R m' -

= 7 n
T8 aen )/ 1 os (/B P2/ TeE e (3.56)
;—l:h:B‘- 2 1 1 2 2 nln2 2 1 nln2

{3 obtained. Since G(t) = O for t =<0, this expression clearly represents

a transisent which is zero for t <:{g n* the minimum group-transit time,
12
} for the wave groups represented. [t is also evident that the range of

= -
integration may be terminated at the points y . (t) and i (t) at which

. _ _ 12 172
% = t, as G(t-tn - ) =0 for t < t.

e 12 1"

In this expression all of the waves, which have traversed the thick-
ness of the plate ny times as a diiatational wave and n, times as a ro-
tational wave, have been segregated according to their transit tiis. This
i3 a highly desirable reproegentation from a physlical point of view and
throws some light on the more abstruse connections between wave theory
an eometrical optics.

Considering for the moment only real values of y, b and k, it is

evident from equation (3.40) and (3.42) that the interpretation of these



-
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kl

¢

variables in terms of geometricul optics is

h = (1/a) cos o,
k = (1/b) cos OR (3.57)
y = (1/a) sir €y = (1/b) sin C

where the notation is that of Section 1. It i3 perflectly obwioua that

the last relationship is a restztement of Gnell's law, equation (1.2;.
A most striking feature of the reprssentation in ejuation {2.54) is

that the angles BD and OR are bcth reel at only one point on the zontcur

—

[;ln?; and this point is the idnimum transit time point. The repre-
sentgtion is thus elmost enti-aiy reds up of "wsves" which have no geo-
metrical meaning. The miniiwun traneit time wave groups on tne other hand
have SR and BD real and correspond exsctly with the geocmstrical minimum
transit time nathe t¢ be zxpuocted from geometrical optics

To demonstrste this eguivalence, lst us consider the possible geo-
metric paths in which the dlsturbance travels the thickness of the plate
ny times as s diiatational wave and n, times as a rotational wave oteying
Snell's law where there is a transier of moda and the law ¢t reflection
where there is no transfer of mcde. JSuch paths are shown in ¥Fig. 3.2,

It is obvious that wherever the disturbance is rotatlonal, it travels
in & direction making the angle eR with the normal to the r=flscting
surfaces of the plaie, and wherever it 1s dilatational with the angle BD'

Thus, since tlie thicknesas of the plate is ZRO the distance moved along
thie plate is 2HO Lan OD for swach diletaticnal trip and ZRO tan BR for each
rctational trip. The total :istance traveled along tne plate Z in the

PR ..
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total of ny *+n, trips is thus

Z = ZRonl tan GD + 2R°n2 tan GR (3.58)

Making use of the transformation equaticns (3.57) this result is found to
be identical with equation (3.47) which determines the minimum transit

time point on the zontour I 7
n.n,
Since the total distance traveled in each rotational trip 1is ZRO sac GR,

and that irn each dilatational tcls 18 ZRO sec 6, the transit time is given

by
2@ n 2R n
== - ol o 2
e . - (3.59)

i2 a cos eD b cos eR

Multiplying equation (3.52) by y and subtracting the result frem equation

(3.59) one finds

-~ i

_ _ 1~a;sinun—} 1-‘0;311'16;!
t -yZ « 2R n + 2R n

nyn, o1l

a ¢cos BD J Lb cos GR ,

-

which reduces to equation (3.40) upon using the transformaticn ejguations
{3.57) to eliuinate GD and OR.
This generai equivalence of the minimum transit times given by the

two methods requires more stuldy in the case n, = 0, for in this case the

1
wave theory has given two possible minimum transit times. The corract
one of these was found to be determined according to whether the in-

equality (3.49) was, or was not, satisfied. Setting n, = 0 in equation

(3.53) and comparing w~ith the inequality (3.49), one finds this in-

equality o be equivalent to
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{tan aR)zébz/(az- b2) x (tan 80)2 (3.60)
where Oc is the critical angle of incidence for rotational waves and is
glven by equation (1.3). The minimum transit time, when the inequality
(3.4,9) is satisfied, is given by equation (3.51) which is readily ob-
tained setting n; = O into equations (3.58) and (3.59) and eliminating
Qg+ Thus, when ©,«<0., ths minimum transit time corresponds to rovu-
tional waves travelling a path consisting of pure reflections as shown
in Fig. 3.3a. Under these conditions, some interaction, (transfer of
mode) is to be expected betwssn the rotational and dilatational waves
at the boundary where these reflections take place. However, these
corrsspond to minimum transit time paths with nl:>0, and, thus, do not
appear in the integral expression for ny = 0.
wWhen Gp > €., ti inequalities (3.49) and (3.60) are not satisfied,
and the pure reflection path is not the (uickest path of transmission
that crosses the thicxness of ths plate njp times and as a rotational
wave each time. In this cage the critical angla paths, such as those
shown in Fig. 3.3b, have a much smaller transit time, These paths were
discusse” In Section 1 in terms of geometric optics. Jettingm =1,
L =2, n=np and D = 2R into equation (1.5), one obtains equation (3.52)
which was derived from the wave theory when the inejuality (3.49%) was not
satisfied.
It is obwvious that these two kinds of path are identical when
&g = Jpr Hownver, it is not so obvious why such & transfer of mode

process as tiris criticdd angle path is so importart when *he 2ngls Cp for

the nure reflaziion »2th hies the broparty UR ~ .. In this situvation the
A
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3.30
pure reflection path should lose no energy as it suffers total internal
reflaction and should then be expezted to make a quite significant con-
tribution to the overall disturbance. liowever, in “heir experimental
work on the comparable case of pulse transmission in 4 rod, Hughes, Pondrom
and Mime found that the critical angle paths explained all of the delayed
arrivals which were apparently prcsent.

Geometrical optics offers no reiief from this apparent contradiction,
but equation (3.56) and the nature of the contour IL n, reveal mathe—
matically the reason for this experimental result. Nh;n these critical
angle paths give the minimum transit time, the contour fz i encircles a
pole at ; » 1/a at the minirum transit time, and the stert if the corre-
sponding disturbance 1s sharp and easily identified against the background.

On the other hand, when the pure reflection path, with 6_=< BC, gives

R

the minimum transit time or for the general case T; . the contour is
not close to this singularity, end the disturbance éuilds up at a mich
alower initial rate which is governed by the values of d;/dznlnq in the
naighborhood of the minimum Lrensit time polnt on the contcour, Lnlnq'

o

These initial rises are much slower than those corresponding to & critical
angle path and are much harder to detect in the yresence of a considerable
background of cther disturbances.

This contrast in behavior has o distinct influence on the uss of
ejuation (3.56). When the contours touch the singul rities as in the
situations where a criticel anrle path gives the first arrival, soms
appea.r to an:lyticity in the functiun G(t) is reyuired so as Lo admit
sail contour deformatiocns v+ avell an infinite irteprand. This 3iffi-

1

culty 1s easily aveideld by che wee o a doubie intepr.l expression.
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Returning to equation (3.54), and substituting the value of g(s)

from equation {2.25), the expression

0o+l T o
- 2(1-2b%/a%)% ( ‘.
(R ,Z,t) = (-1)™1
S T N
“_oottT I-Z‘l."g 0
-is(t-t -t')
n

t . © = = Pl w Yy a '~ ]
e F(t )L(nlﬂ'lz)/ fl + (nlwnz)/ fg] nlnz(12/ fl);—‘:h:;}—; dt dyds (3.61)

is chtained. Then using the familiar result
(\m-f-bt

l et 1 >0

-is 0] t< 0
Yoo+l T T>0

¥l

the above expression can be reduced to the form
o
“t t”:"‘

, ' 1 k
A . (r ,Z,t-t )F(t )dt (3.62)
152 o]

Yo
G —
wrnere Yn) ,,L/ﬁ‘f"j
(1-zb2/a2)‘a

. : n
VA (R ,Z,t-t ) = (-1} ———
Ry~ ® . BR L

. , - ST dy
. (nlnxz)/ fl s (ny- n,)/ f?:} (f,/ f!; (3.583)

-

o
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Since the functions involved in this integration over y are defined for
all valueg of ; in the cut ;— plane except ths actual singular points, it
is easily seen that the contour of integration may be any curve joining

-~ t
the point y_ (t-t ) which does not cross a

' it
(t-t ) to the point y_
ulnz i

18
cut, and the value of the integral may be found for all values of RO,Z,

and t-t' except thoss for which ;nlnz(t—t') falls on a singuiar point.
These must be found by an appropriate limiting process. In general, the
numbersAZ\nlnz(Ro,Z,t—t‘), which determine the response of the comple-
mentary solution to a unit impulse delivered at the time t‘, can be found
for all values of RO,Z, and t that ars of physical interest. It 1is also
apparent that they are capable of analytic continuation intc the realm of
complex valuas of RO,Z, and (t—t‘).

#lthough the integral in equation (3.463) can be expressed in terms
of algebraic processes and logarithms for all of the integral values of
ny and Ny these expressions are extremely complicated, and it is probable

that any calculations will be more readily made by numerical methods of

integration. A3 an example, for the simplest case n, = n

1 = O, one finda

2

LI
{"(t-t /2 = 04

A L (1-26%/a%)% | Sl
{R ,Z,t-t ) = S e
B e bR nt J , 7T,
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B (1--20’)3/2 ;&(1-20*)1/2 2
= log4y —— TR = (3.64)
R 21 2 —rk(1=200)*<] |
T o
s /y-izm;\ /mqr-.ihﬂl\i\“ Z 01
ug:req log(_ - )( — _G) I
y+ikM J\im y+ihM d
Q' Vg _jt;t + 01
where
M om (2(1-0)m2 » 20~ 1)1/2
q q
o3
q
Ne ™ i T3 3
' T nm -rm)\m‘*mq) (m -mo)(m —mo) (m -m)(m- )]
GL Y 3 2

¢ 1is Polssons ratio, and My Mo, and m3 are the roots of equation (3.33).
In addition to the obviously numerous steps in such a calculation, there
i3 the further difficulty of having tc compute a small difference of two
quite large numbers when 0" is nearly zerc. This {ifficulty is present in
nearly all of the integral expressions obtalned in this analysis. It is
due to the changin, nature of the singularities located at ; = :(l/a).

As 0 -»0 a pole, located ou another sheet of the Riemann surface as-

sociated with the integrand for all real J” ¥ 0O, approaches the branch

¢ . ' . .
points ~(1/a) as a ilimit. UHowever, it is resilly cbserved that
A - (R 7,\,-t J=P 0oas @ =¥ O, and oan approximace Soweels vyalid for
Dl.nz
smalt @ ocouild be found in o whioch Whe RLTLcaivies Litn laeyws aanbers are
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avoided, In the case of equation (3.64) the obvious approach is to expand
in ascending powers of O and use the leading term in this expansion.

The convergence of tha saries (3.37) is obvious for R°}> 0 and
finite valnes of Z and t because 1t will consist of only a finite number
of non-zero terms under theae conditions. However, the numbsr of terms
may be quite large, and the individual terms are difficult to compute. In
addition, there is a difficulty associated with the serles as a whole.
This stems from the fact that although any individual term has the property
of beginning at a certain instant of time, it does not end or, in general,
even bhecome small as t— o0 . Indeed, all of the terms except that for
nl-n2-0 become infinite as t —» 69 even though the driving pulse, F(t),
has a finite Jduration. Thus, the ultimate decay of the overall transient
for any finite value of Z must be brought about by the destructive inter-
ference of the various wave groups which have different values of ny and nye
It is thus necessary to consider all of the non-zero terms in order to get
an accurate picture of what is happening at any particular place and time.
A fair spproximation can be nhad by considering only those wave groups whose
minimum group-transit time 13 dust lesa than the time under consideration
when f,he driving vulse i3 of snort duration. This follows from the be-
havior of the terms in which ny o+ N is constant. For these terms we find

<

as = result of equations (3.43) and (3.63) the asymptotic expressio
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2 . 2(1-2b%/a%)%a
Z_; A (R sZyt-t )V (-1 a
0y ny,n-ny bl‘Roni
(\(t-t')/(z + 2inR ) (3.65)
T
[
, TR n >0
(t-t )/(z-zjnao)
which is valid when
it' > > am? s B2 (3.66)

Thus, when t' is small as in 2 short driving pulse, we find that the sum
of all of the terms, for which ny +n, i.s constant, remains finite as
t—> ©C.,  Since these summed groups also interfere destructively as a
result of the factor (-1)n is equation (3.65), it thus appears that a fair
approximation can be had by neglecting all terms for which ny +n,=n and
n is such that the inequality (3.66) is satisfied. However, if any term
is neglected, it is necessary to neglect all others having the same value
of Ny * Dy A somewha! better approximation can be obtained by using

equation (3.65) to calculate these terms.

A quite comprehensive interference effect is also to be expected as

Z —> %, for under these circumstances the minimum group-transit time
0 1 4 s . 4 ] 4 D .

t approaches the minimum group~transit time t and tGhe contour
ny0, g c n,

-

T; " R I;o as a limit where n, and n, are any finite integers. Thus,
12 - N

. . . .
as 7 becomes large, any cwntnurih = affectively encircles the sinpgularity
R
12
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at, ;'- (1/a) for values of T o Just greater than the minimum wvalue t°

) Mf2
which are in turn just greater than the minimum value Eg n corresponding
2
to a critical angle path. The corresponding contributions to l£\n 5 (RO,Z,t)

12
occur at times just slightly later than those of the critical angle paths

included in /\c)nz(ﬁo,z,t) and have a sign which is governed by the
factor (-1)nl appearing in equation (3.56). These successively later
contributions are qualitatively of about the same size as those of the
critical angle paths and as Z > €0 completely destroy the disturbance
corresponding to the critical angle path. A similar destruction of the
primary dilatational dicturbance by terms of tha form ;xrﬁp(ﬁo’z’t) takes
place as Z—>92 ., In either case, this destructive interference by these
slightly delayed but similar wave trains should be expected to ultimately
shorten the wave trains corresponding to the direct dilatational and
critical angle paths as Z becomes lerge. This ia equivalent to a gradual
elimination of the lower frequency componcats irn these wave trains as Z
increases. In order to maintain overall conservation of energy, these
must reappear in new wave trains formed by constructive interference and
appear at later times,

The very complicated undertaking of obtaining an asymptotic series
and a remainder will not be attempted here, but it is possible to obtsin
the leading term in such an expansion in a fairly direct manner. Returning

to equation (3.5%) the integration was found to effectively involve only

a finite part ¢ the contour [ as G(t-t ) =0 for t <t . The
. nyh, nyn, nyn,
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= _—
initial and terminal points were found to be y (t) and y (t) res~
) e
pectivelv, the values of ): for which € - t.
198

For convenience, let us consider the case in which Z and t —3 oo
in such a way that t/2 approaches a limit somewhere in the interval

0&€ (t/2) < (l/b) We find from equation (3.40) that ;n g ) P

172
(t/2) + 01 and y (t) —> (t/2) -~ 0% for every finite value of n, and
l 2 i
n,. If the further assumption {3 made that F(t) = 1(t) where 1(t) is

Heavisides unit step function defined by

1(t) =1 t >0
1(t) =0 t<0 \3.67)
the fcrmal result
(t/z) ~ 01

_ (21)(1-2b2/32) y'a ZE:: ny
Lim SZZC - L :3—- e (_1)

?.wRob h
(L/L.) + 01

l:nlmz,/ ?l . (nl-nz)/ ?2.] En /T ) (t-r”-.?n R H-2n SR k)dr

is readily obtained from equations (3.37), (3.54), and (3.5%) in which
the contour of integration may be the limdting contour or ary curve joining

the initial and terminal points whicr Hoes not cross a cut in the y-plane
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except at the singular points. The double series ivolved here is easily

summed to yield the result

(t/2) - 0i
-{21)(1-26%/a%)? 723 -
Lim 3 - dy
ch P (- -2 2\, "‘2_.2
o <i7 i a jJll=« C )
& pe0 J (t/z) + o4 9

which is readily integrated to yield

Lim 's'ZZC = -1(t-]|2]/a) + (a/Co)l(t-IZl/Co)
Z3c0

Since this is a linear system, it is obviou= :jial e geﬁeral result

is

; < a F(L- / (¢..
Lim &, = -F(t-]z]/a) « (a/C )F(e-]2]/C))

Z->00

and that equation (3.2C) is valid as Z=>» 9© as well as for Ro-—*Ch and
thus, it is valid as (Z/2Ro)-f>cx’ in any way through real values.

While the preceding argument is satisfactory from an intuitive point
of view, it is open to some mathematical objection as a result of ex-
changing the order of several limiting processes. In addition, if the
limiting value of t/Z is greater than 1/b, the double series is always

nropsrly divergent over part of the integration contour. A somewhat more

satisfactory argument can be made directly from ejuation (3.17) and will be

considered in the naxt =2sciion.



4. THE TRANSFORMATION OF THE FORMAL SOLUTION OBTAINED

FOR PULSE TRANSMISSION ALONG A RCD

The successful transformation of the formal solution obtsined for
pulse transmission alcng an infinite plate into a form which ia closely
related to the considerations of geometrical optics, leads one to conaider
the possibility of carrying out a similar transformation upon equation
(2.28) which expresses the complementary sclution for the similar case of
pulse tranamission along an infinite rod.

In so far as mathematical formallties are concerned, one might Jjust

a8 simply consider the more general expression

Aoort T 00
2
(l—2b2/a )2

) [
(2m)<i

J-002iTJ. g0

(2¥ 1)2,3,,238(5)J,;,,i(hrzo)J,,% (mo)e—z(swz) s o)
bh'hBRo A))(h: k, RO)

@

T >8>0

where Ay(h, k, RO) is given by equation (2.19).

This expression reduces to ejuation {2.28) when 2) = 1/2, &nd to
equation (3.17) when 9 = O. More generally, when 22 is a positive
integer, this axpression ia the solutien of the similar problem in a hyper-
space having a total of (22 + 2) space-like dimensiocns, and (22 + 1) of
these s8pace-iike 1imensions making up the hyper-cylincer raiius.

i} bl
38~ i
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By expressing the Bessel functions of the first kind in terms of

those of the third kind according to the equation

-J,)(z) = (1/2) HN (z) + Hm(z) (4.2)
Y Caas

»
where H))(z) and Hszz) are the two Ressel functions c¢f the third

kind, one obtains ths relation

J""ﬁ(h‘no) J»&(kn (H,Ey%hﬁ )+ }'i»xhn ))(f"i*ﬁ(k!t )O%RRO» (4.3)

AJ)(h’ k, RO) (h’ k, RO) (1 - Vl)(l = Vz)

where
4
4y s, m) o A%,k R
¥, o+ W =
]
S A”"(h, k, R)
(L.L)
Y
wl"'2 A)Z(h’ - RO)
AP, «, v
and
(" n) 2.2 {m) m
A5k, 8 = 02 - yA? M s H L o))
lhs® | o 3™
= e Hm;_(bﬁ\_)) P (it ) (L.5)
(28 4 o
. V(™) %

iy “u, f“’gw(nq ) f‘.,a_;; (kR )
ER <%
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With the ald of the identity (3.25), it is eazily shown from equation

(4.4) that

21 n.=n
TA <

Wy - W ) ,
12 o) Q (h, k, R) (4.6}
T2 n,=0 80,005 '
where
fn N
é&nl
() g (ny+ny=q)t (-1)4
C)n n (h, X, Ro) "
12 Zj (n;=q)t(n,~q)tq!
q=0 )
] q
Ay (ks ks R )_\ %) (n, x, ¥ )] A 5 ks v

. e

LA!,,I S A,’,’(h. ks R)

| A8, e, v

Thus, employing the series expansion (3.24), one obtains the result

Ca%d o0 + h’)
Z 'Y ('t nzQ % R) (4.8)
y )

nl-O n2-0

(1_w1)<1-..)

which is readily svbstituted into equatien (4.3) and rearrangsd slightly

Lo obtain

() g, sRy) 1oy A )
ex(t2o) Uy 729’( ; “WM) b K R )

Laagj {2y ey Ro) “,(, o0

(L.9)
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where
) ™
WW) (h, k, R) wa(ma}-b%(k%)QM (h )
3 X = s Ky R
nin, o A‘;’,‘z)(h, o Ro) nn, °
H, (e )h (kR_) ()
12 ) ML
_{W"’(h ks R) ny-Linga (™ 0 o)
(4.10)

)

I
(hR ) yikR ) AY)
-}ML(];’; /é ann-l(h’ Ky )
A ) \h, k, RO) 12

H:;) (hR )H,,N (kR)) ~ )
) = Qn -l,n2(h’ ks Ro)

(ﬁ,ﬂlh, ky, R ) 1
(h, k, R) = O when either or both of the

with the stipulation that Q
12
area

integers, n, and Ny is -1.
By using the same methods as employed in connection with the series
7) and {L.8) ar

t 15 readily established that the series {4

(3.28), i
absolutely convsrgent if
&% {L2)
!A’ (hy Ky RO)I IA;) (h, k, RO)I ld)})\h) k,R)‘
(4.11)
IA)} (h’ k: Ro)l

#
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This absolute convergence and its uniformity are readily studied
with the ald of the asymptotic expressicns for Bessel functions of the

third kind which are valid for large values of z: el

{n
Hv(z)fv (2/m2)

o0
1/2g1[z-7(227+1) /4] (-1)"T® + m+ 1/2)

= " TP -m+ 1/2) (212)"

- < arg z <2n

(4.12)

oQ
Hm(z)/v (2/‘72)1/26-1[2.47(2)) 1) /i) Z" TO+me+ 1/2)
’ | gat IO - me1/2) (242)7

me

~2r < arg z<<m
Since z is either hP.C or kRo, it i3 obvious from eyuation (2u32) that
when RO> 0, Im(s) is =ufficiently large and positive, and y is real, the
leeding terms in the above asymptotic expansions will become dominant and

the simple expressions

in g Topll il - arg z < 2
H) o) - (2222 (106 €212 1)/l] 1 IR
z{ > > |V-1/L
- L arg z &L N
(G 1s)

2) P (oD 411/
H;’ (2) = (2/m2) "/ (106 € "HLE(2P +1)/1) 2> > oL/l

wiil be useful. It is readily shown that
[ € | X -n/2< arg z < 3n/2

| €1 =¥ ~W/2< arg z< /2
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where .
K= (m/2) (PTa/l/ls €Y =al/iz]) (4.16)

However, an examination of the range of values of hRo and RRO shows

&
vk

it is necessary Lo uBe Lhese sirple expressions over the interwal

Iid

0 €arg 2« nw and a more critical examination must be made of the ex-~
()
22

pression for | h)(2z). Applying the continuation formulse™  for the

221bid., p. 75.

multipls valued Bessel functions of the third kind to equations (4.13)

and (4.14), one readily finds the result

|€pl £ X + 2(1+M) jcosPn|€ ~2Im(z)

(4.17)
In/2< arg 2z < n/2

3ince lzl-lﬁ |Im(z)"l, it is obvious that l‘—":l and |€'2,2 have upper
bounds which are independent of Re(z) and are monotono decreasing with
the limit zero as Im(z) increases through positive values to ©0. Thus,
since a » b, squation (2.32) givcs Im(z) ?—(Ro/a)lm(s), and this implies
that bounds independent of the real variable y and Re(s) can te found
which are monotone decreasing to a zero limit as Im(s) iucreases to ©0
through positive valuss. Thus, if Im(s) is chosan sufficiently positivs,
eguation (L.11) is equivalent to equation (3.30), and the series (4.7)
and {4.8) will be uniformiy and absolutely convergent for Im(s)= & where

d 18 positive and=p o0 as (M P> and/or R == 0
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It is unfortunate that the similarity of the ssries (4.7) and (4.8)
to the series (3.28) and (3.29) is not in genersl capable of much greater
oxtension than this similarity of convergenco; Whereas, each term of the
series (3.28) and (3.29) is a single vslued function of h and k having a
finite number of poles and an exponential behavior at infinity, the corre-
sponding terms of the series (4.7) and (4.8) have a finite number of poles
and the same type of axponential behavior at infinity only if - <arg (i)
<t and v < arg (k) <. and are, in general, multiple valued functions
of h and k and have quite different characteristica when arg (h) and/or
arg (k) 1lie outside the above open intervsls. The only exceptions to this
difference in behavior occur when 2/ has such a value that sin Yn 0. In
these exceptional cases the terms of the series (L.7) and (4.8) are single
valued in h and k and differ in analytical nature from the correaponding
terms of the series (3;28) and (3.29) only in the number of poles which
increases as !))I increases. When ) = 0 these two pairs of series bocome
identical.

In the contour deformations employved in Se;tion 3 in connection with
the i.ransformation of equation (3.38) into equatién (3.54), arg (h) and
arg (k) are required to sweep through the range of aviues from
- tan™t [Z/2(n1m2)}lo] tor + tan - [Z/Z(nlmz)?ioj where (z/Zﬁo) is
positive and the inverse tangent lies in the (irst quadrant. Thus, the
values arg (h) = m and arg (k) = © are swept over in thes process, and it
cannot ve employed in connection with the t.erm by term integration of the
series (4.9} for sin 3)n ¥ O 28 the changes in the bahavior frr '~rge
values |h| and |k| maks the integrals over the deforwed cout .8 nroperly

divergent. 8




£
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Some relief from this difficulty is available as it is possitle tc

obtaln a second series based on the ralationship
MYi 2 2mi
Jyte) = -a/2) [€7 Ho )« Hy e )] (4.18)

which i3 satisfied by the Bessel functlons of the first kind and the
multiple valued Bassel functions of the third kind. This series may be

derived by the same processes as the series (4.9) and will be written as

dpog(nr) iy, (ke )

+*n
ZZ ey 2Wn R B (09)

Ay, x, & o

The numbers \AJ i (h, K ) are easily found by repi-~ing the
i

/Vt
functions }4ﬂ(z/ which czour in JV (B, s RO), that is with z = hRo

or kRo, with the functions 6-2"1)1 Hg)(z 6'2"1). This series is again
uniformly and absolutely convergent for Im(s) > &, and all values of Re(s)
and real y. However, whereas the asyiptotic behavior of the terms of the
series (4.9) i3 given by

¢ n -
\A/ ) ~ (-1) z[knl0n2)/ £y (nl-nz)/ o

n.n

{
12 - < P o \fz/fl)

n

(4.20)

. €iEx1(th+'))ﬁ) + nz(klio*))ﬁz}
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for IhRo| S S V(| V] -nn < arg (hR°)<n
and [kR | > >{VI(|Y]+s1)  -n<arg (kR)<

the asymptotic behavior of the terms of the series (4.19) is given by

‘ 1
M/ N ) n2
V\Llnz NV (1) “[(nyeny)/ £y ¢ (nyn))/ 1)) alnz (£/1)
(L.21)

, ei[nl(hﬂo—‘))'n) + nz(kRo-))nﬂ

for lhﬂol > l))l(l'))lol) 0 <arg (hﬁo) < 2n
and [kR_| 2> D [VI(1DV[s1) 0 <arg (xR )< 2

Each of these series (4.9) and {4.19) may be employed over half of

the range of integration to yleld

o0
A)
s - D i G (rz,0) (.22)

nl-O nz-O 12

where the series nave been integrated term by term and




-~ 0+ T

Lolo
) 5 n,+n
C” (a.z0) = 12941 (1222 %/(m)? (gt e
!".1!‘.2 [o]
wo00tl T
32
287y 38(5) WH)/ i( t z)
—— (h, k, R )E™HETL 4, (4e23)
* b"h3no By Ry 9
~
,
32
26%%ag(s) |, 0) "
N — W (n, k, r)EE) g,
b,“tho R8s e
- o0

T, 8
Upon changing to the new variaties vy, h, and k defined by the system
of equations (3.39}, it 15 readiiy found tk * the contours for the y inte-

gration can be deformed to yleld

0ot T
o) n.en
C o (R0 = (2o (-2 Y (m? | (-1) 2
12
SENE I o
SR
2y ag(ﬁ)wfv‘? o te(t-r2
: M (sh,sk,r ) €-18(tr2) 4 (4. 20)
ph h3R0 nyny Y ° )

J iy j"‘z
F 253 ;

N
U I,

N

2

ag(s) a7 _ _ ” =2

T Wx " (sh,sk,Ra) € te(t—rz] dy ds
h Ro 172

b

o =

where the contour I;] . starts at y = 0 and runs along the positive real
152

axis until it meets the contour f’? . of Fig. (3.1

L It tian goes tc ¢©
ey d s
12
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along the branch of the contour jﬁn i which lies in the upper half of
12
the y-plans. The contour Iilr‘ is the mirror image of T in the real

n,n, “nn
axis, but it bsgins at ©0 on the lower half-plane branch of ‘f; o and
172

ends at y = O.

Difficulties are again encountered when n, = 0O 88 the contours may
touch the singular points ¥ = 2(1/a), 1(1/v), and :(l/CR) at which one or
more of the poles of the integrands in equation (4.24), considered as a

function of s, may recosdes to ©9. Stated in other words, when Im(s) is

sufficiently large and positive, the intasgrands considered as :» function

of vy have a finite number of poles (the number dependent on 2)) clustered
about the branch points y = 2(1/a) and =(1/b) and one in the immediate
vicinity of each of the points ; - :(l/CR). These pcles aprroach th
points mentioned as limits as Im(s) —> ©9, and by choosing & sufficiently
large, the contour deformation cen be accomplished without passing over
these singularities so long as ny $ 0. The integrals with ny = O cannot
be handled in this way with a finite value of 8. Various methcds of tresti-
ing these integrala suggest themselves. The mosi obvious of these is to
represent these integrals as the limit of thc more general integrals as
ny -» 0.

Substituting . .e value of g(s) from equation (2.25), and inverting
the crder of inbtegration; ona cbtains the resuls

Lt .
("”) (R ,",%) = f AM (R_,Z,t-t ) F(t Ydt' (L.25)
nyf, 0

vy N )
.1.' i
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Le12
where
co+cT
: “n.'éno
Al (Rzieet') « -1(20)1) (1-20%/aD) /(20 (-1 2
2 :
\J..aoft'c
Y, N t-f«’l‘
' -
287 74 W"’) - = ~t8(t-t —2) -
’ ;ngag- nlﬂz(Sh’ Bk Ro)éz ’ dy (5‘26)
0

®

3 =2

287 yTa M _ ' - _

M T_:;—V\(\ n (sh, sk, Ro) e-ia(t-t 74 & ( a8
- b B°R 12

and tne finite limits on the integration over ; are justified by the

1 -
vanishing of the integral over = for t-t < tn - This vanishing of

172

the integrasl over s in twrn {cllows from the fact that the integrand is

- ] -
regular a3 a function of s for any fixed y and Im(s))>b when t-t & tn o

172

The integration contours for the variable y can now be deformed so as to

avold the necesszity, when n, = 0, of touching the points Y = :(l/a), i(l/b),
and :(l/CR) except when one of these points must be the terminal poini on
the contour. In such a case a limiting prccess zay still be required.

&) '
Although the numbers;L\n (R ;Z,t=t ) are ezsily shown to be zero

n, o
. 12 1
for 4-t < (nl/a + nz/b)Ro, they do not appear to be zero for t-t < £°

R 12D

sxcept for the situationc when sindw = Q. In these special cases the
twn series (4.9) and (4.19) have identical terms, and the Bessel functione
can be expressed in terms of algebraic functions and exponantials. Thus,

egquation (4.20) takes the form
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(\ooihb'c
v)
A (m 2,04 290 (12202 % (o) J
l s m&bt
T {t-t') ,
F ' e 72 - -is(t-t-E )
Tjﬂ T n (Sh, Sk R )6 l 2 drda (5027)
b~ h“R 2
» N /’
?"l”'.(t t) sinyrn = 0,T> b

vhere -7-hﬁ is & rational function of qg sk, and Ro, and the contour

of integrai‘in over ; may be f;ln or any other curve joining the point
nn 2(t,--t, ) to the point y ln2(t;t?) which does not cross the cuts in the

cut Y—plane as shown in Fig. 3.1. 3Since the intezral over s vanishes f{or

! - ()
t-t <= = it 1s obvious that A (R &,L-t, ) = 0 for t-t < t,n -
12 s 12
and may thus be associated with the same type of geometrical path as the

impulsive response /\ (R 3Zyt-t ) was in Section 3 whenever ainynr = 0.
The failure of the correspondence between the geometrical paths and

&) 1
the impulse responses, /Xn 0 (RO,Z,t-t ), when 3in w # 0, is rather
3 ]

-

disconcerting since the asympitotic properties displayed by ejyuations (4.20)
and {4.21) would lead one to expect these impuls: responses to be associated

with waves which have traveled the distance 2ano 23 a dilatational wave

and Anzﬁo as a rotational wave regardless of the value of 3/ .

Trie failure is readily traced to the integration over F i the interval

()“y°_ . which occurs in the two integrals appearing in each of the
)
equations (4%.24) and (4.206) when the countours ]1*q and I;"n are employad,
IQ.A 3 4y

a &

e
[39]
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bhen sin))n = 0, the contributions from this part of the range of inte-
gration are equal from the two integrals but opposite in sign and cancel
out. When siny)n ¥ U, the contributions are unequal and do not cancel
each other.

A study of the steps taken in obtaining equationes (4.24) and (4.26)
reveals that the process can be generalized to the extent that the contours

17;;n2 and j?;;n? do not have to be terminated at ;'- 0, and could have been

terminated at any'other common point ;c lying in the open interval of real
values -(l/a)<:?c<i(l/a). This follows from the uniform and absolute
convergence of the series (4.9) and (4.19) to a common sum when
Im(s)> & and y is on the real axis in the interval -(1/a)< y <(1/a).
Terminating the contours at such a common psint y. will in general altsr

the values of'(jﬁv (R ,2,t) andkfxﬁ» (R ,Z,t-t ) but will not alter
nyn, o nyn, o

1 i
S??C as the sum of the changes due to altering the contours ]’A £ will
- 12—
sxactly cancel the sum of the changes due to altering the contours I1n n
172
for any value of ). Thus, in any calcula*ion of S;ZC we may pick Ve at

any convenient point on the abave interval. Since the minimum group-transit
P =
time on the thus zeneralized contours r and T' will in general
nyn, nn,
be a function of ;c’ this choice may be used to advantage.

For example noting that

a0
4
s -Z DY (r,2,0) (4.28)
n?=U 2
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where
o0
&) DN) ' 1 '
Dnz(Ro,;:,t) - Dnz(ao,z,t-t ) F(t )dt (4.29)
o )

and

) = Y]

' A I
nz(RO,Z,t-t ) = an‘,O Anlnz(ﬁo,z,b-b ) (4.30)

we find on letting ?c——,> (1/a) - O that B:Z(Ro’z’t-t.) is 0 when
t-t' & Ez n, where Eg n, is given by equation (3.52). It is thus aprarent
that although the correspondence with the general geometric paths ias in-
complets for sinyn ¥ 0, it ic ali~ys possible to split SZZC up into parts
which correspond to direct dilata.lional and critical angle paths such as
are observed for rods.

The differences in the behavior of the series noted above lead one
to consider the asymptotic properties of S,,. as (Z/Ro)"9 00 ., This
may be accomplished di.ectly from equation (4.1)

As in Section 3, it is convenient to take F(t) = 1(t) where the unit

step~-function is defined by equation (2.67). The corresponding transform

g(s) is given by

5} = (i/s) (4.31)

Substituting this volue into equation (4.1) and changing from the

A § i
variables y ani s to the variables y and 8 defined by



X
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r' =Zy
' (4.32)
8 =28
one finds
ipooé—é‘t.' N *
o (1-22a%)? "
722¢ = T . .2
20 J-ao-n"r -
:(2)’.1)(s'r')2aJ,),ﬁ(h'Ro/z)Jg,yl(k'ao/z)e*[s (¢/2) -y J4 o
’ ] ] ] d
v4n') (R /2) Ay’ k' 1R /2) o de
(4.33)
where
- ~1/2
' . |(e'/a)? - ()3
o (4.34)

—-1/2
' = {(s' /0)% - (v)?
- -

It is tlen readily shown that

00+t T {'\00
1
Lim Sw) - —
220 (2")2
Z/R
(Z/R )5 o - J—_w

2a 2a ' o,
o - i -i[s (t/2) -~y _j 'd |
[(B')Z = (8)")2 (8')" - (ey y,){}é dr ds

(4.35)
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where ¢4 1s the positiva root of

82(3) +1) - b2(29 +1)
a%(V+ 1/2) - 26°

N

2
(ey)® = 20

(4.26)

209 + 1
or (ep)® = 2b

209 + (1 -0)

(when egprossed in terms of b, ), and the Poisscn ratioc, 0,) and it is
assumed that ¢ increases with Z in such a way that (t/2) approaches a
finite limit.

The integration is readily carried out in terms of residues with the

aid of Jordan's lemma to obtain

Lim Sé;z = -1(t - |z|/a) « (a/cy) Lt - IZI/c}))

(Z/Ro)->oo

Since we are dealing with a linear system and such step-functions as
1(t) may be combined in a linear fashion to obtain a suitably arbitrary

function F(t), it is obvious that the generazl result is

) s
Lim 8,,. = -F(t - |z[/a) + (8/cy) F(t - |2{/cy)

(z/ao)e-ao
and that

- g -+ .:(1,) - - t -~ i / ) { 27
Z Lim (‘)r:ZP ) bzzc) (B/C))) F(t’ 1‘7' b > ."#‘.vn

(Z/R 200 (2/R ) = oo

TN
im SZ

for eny waal value of Cy.
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This result implies that at large values of (Z/ZRO) the disturbance
appears to have travelled the entire distance Z with the speed Cq . It
is easily shown from equations (4.36) and (2.30) that ‘2 2.&,»%2 2b2
for all real valuea of 7 > -(1/2) and values of Poissons ratio 0" in the
range of physical stability 1/2 2 02 -1. In addition for O = O cne
finds ag = 02 - 2b2, and the sompleraontary solution vanishes identicelly
as would be axpected.

For =) = 0, equations (4.36) and (4.37) are identical with equations
(3.19) and (3.20) respsctively. PFor =/ = 1/2 we find

38 - 1b°

(cyg)® = —" 26%(1 + 0) (4.38)
8" -

as the asymptotic speed of the disturbance in a c¢yliindrical rod. This

speed is exactly that predicted by Rayleigh'323 approximats theory for

- am am mm G amm e G G amm v e o D mm Gm G amm R e G A e e mm A G e S e e

o e e m em e am e em mm e mm e as e e mn M o mm Em R mm GE W M mm WA emm mm SR emm e am = e

thin rods.

The simple expresslon, valid for all real values of €y, obtained
for the asymptotic properties as (Z/ZRO)'~> & , leads ones to reexamine
the processes leading to squations (L.25) and (4.27) with the idea of
modifying these processes 8o as to obtain a segregation of the disturbance
into parts whizh will correspond exactly with the geometrical patha of

Section 3 regardiess of the value of 3/,
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Having found the equation (4.27) which is consistent with auch a
segregation whensver sin)m = 0O, it is natural to consider the possibility
of extending these results to other values of 9 by interpolation between
these values cr some other such process of gensralization.

The integration over s in equation (4.27) is readily carried out by
evaluating residues with the aid of Jordan's lemms at IZ)) + 1| poles of
order ny ¢ n, ¢ 1. The results so obtained will give quite complicated
combinations of exponential and algebralc functions which must then be
integrated over ;7 In order to point out the fruitless nature of any
effort at interpolation, ii is only nscsesary tc consider the values of
Anlnz(ﬂo,z,tat’) obtained from equation (4.27) fcr the initial rise
Just after t = t' + 1?‘1"2‘ Since the initial rise is controllied almost
entirely by the Fourler components of high frequency, it is convenient to
expand -rnlnz(s.ﬁ, sk, RO) in inverse powers of s and uss the leading
term .nlv in getting an approximation to the bshavior in the neighborhood
of tie initial riss tims. This is easily accomplished with the asympiotic
formulae (4.20) and (4.21) which are identical when sin? n = O.

The result may be written as

) ' Y(n ¢n2) :
AL Bpztt) = @Y1 () AL (Ruze’) (439)
12 . 172
] -—r) 1 ~0
t o+ tnlnz < t<t o t“lﬂz + €

i
where € is a small positive number, and 'Ah 5 (RO,Z,t-t. ) ie given by
12

equation (3.63).
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From a physical point of view, the main feature of equation (4.39)
P(nyeny)
the phase changing factor (-1) . There appears to be no way
of generalization consistent with experiment in the case )) = 1/2, which

has been investigated.l Experimentally it appears that the initial rises

(Ya
of {5 ; (R ,Z,t) are of the same sign as that of the direct dilatational
wave and anpear for all values of n, Just as dould be expected of a plate.
Y (n;+n,)
If one attempts to generalize by replacing (-1) by

cos [:(nl + nz)))n:], rises could only be founi for even vaiues of n,

when n, = 0 and ) = 1/2, and these must cscillate in sign accordingly

1

as n, increases through such even vaiues.

P (nyen,
Since the same factor (-1)

is also contained in the neglected
terms, it is apparent that some other approach is required when sinpu # 0.
However, the nature of this anrproach is not immediately obvious.

The complementary solvtion for 2) = 1/2 can be calculated from the
equations develcped in this section, but the effort and time required
would be prohibitive.

The failure to obtain & solution like that for the plats, in which
individual terms of the series correspond to each of the varicus types
of geometrical paths, is certainly not to be construed as clouding the
significance of such paths or the existence of the corresponding wave
trains, for these wave train., interpreted according to the principles of
geometric optics, have been used in geophysical prospecting to map all
kinds of curved surfaces in a consistent mananer and in agreement with data
obtain-4 from welil cores. The varticular matnematical metncd empleyed has

simply been Inadejuate Lo acoonpii b the splittin: of the sverrll 4%

»
(8]

turhanee into sevarate sioces of 2he aesired type,
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The mathematical methods ware adequate for the cases in which

sin) m = 0, as equations of the form

' 1/2 i(z - (P 1)/2
() = /2y 2[p ) (a) €22 - (P2 /)

(4.40)
. py (Z_)€~i(z - (Y l)/2)]
exist where
[ =) Sy ,
L2 & i = L 2 - . o)1
pyylz) = ’ R Al e il (bt
? T (12 + /2] - 1/2 = m)t mt (2iz)"

when )/ is a positive or negative integer or zero. The use of these ex-
pressions in the preceding analysis gives equation {(4.27).

vhen ) is not a positive or negative integer or zero, there appears
to be no function pzj(z) satisfying equation (L.40) which has the property

that the ratio pl)(-z)/pjj(z) is single valued and regular at infinity

N

i.e. a raticnal function). However, it is in general possible to re-
present the Bessel functions of the first kind as the limit of a sequence

of terms of the nature of equation (4.40) namely

1 (U)N)
JJ;,\{;(Z) » Lim vty (=) (4oh2)
N — 00
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where
»N ; R
i (e = /a2 (z/z)”““[pj;u(-mei(z !
(L.43)
o g () €74z e 1>/2>J
# is an integer, and
.
P;fu(z') ~ T(2) +1 -u) é_,_‘_,o
(b« 2n + 1/2) (o + n+ 1/2)(-1)"
. (L. LL)

P,.ont2)
A T L =g = 0) T vm s 32) BN

in whick the ratio pgu(-z)/p;u(z) is obviously a rational function.
IR

This infinive process is easily obiained from Sonine's expansion

— e o vas G ams  vas mm e Tu dme e ame dme s e m an  em e wm e ame e e ma e e e e G e e

Jypp @) = /2P F T~ o 1)) ,

(s 2n + 1/2) Ty + n + 1/2)

[ 4 —

ntT(Y + 1 g =n)I(2 «n+3/2)

Viaoney (20 (b.45)
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which is valid when u + 1/2, 90 + 1/2, and 2/~ u are not negative inte-
gers. One merely defines \}sgsf)(z) a3 the sum of the first N terms of
the above series with the stipulation that g 1is an integer and applles
equaticn (4.40) to each term sc considered.

Althouph thesc processes converge guite rapidly, one finds that
Lim pN (2) does net in general exist. Exceptions occur when 7/, as
N—Poo K
well as u, is »n _nteger and 7) Z u. In these cases the sequence termi-

riates, and one finds

N k3 e 4
p),#w) = py (2) Vu, N2 -u (Lo ub)
- i Y ¢ % 3 g
The possibility of representing S as the limit of a sequence

based on the above infinite segquence suggests itself., Defining 5(7)’M’N)

7zC
=y making the substitutions
ZZG zz2e
(H)N)
Sy, iy — Jwg_ i) (4e47)

(l‘”l »N)

J))—%:L(Z) — JV-'_‘/@

(2)

into equation (L.l1) and expanding the right-hand member in ascending

21ihR 21kR =
powers of f; o and 6{“ o, one reedily obtains

o, 2] T0O

oO’ {" vy
y T ; 5 1% (2,1, N
e\t N ; : N N B
S,_(,7,."‘" - fe A uks )(RO,Z,'{.-—t YE(r Ve {6.48)

i
n, =t .~ 2
) { O

nit.
1z
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= L.2L

where .
oo+t T

/\(’)’”'“)(Ro,z,t—t') ~ ~1(2V+ 1)(1 - 2%/a%)%(2n)?

—o04+L T

Yo o (t—t )

1 2 32 (tt' T )
28y a -is(t-t -t =

J N T Vi) (h, 5k, ) € 172 drds (ue9)
b“h’R 172
' (o]
Ynlnz(t~' )

in thch-1ﬁ(1) sbbs N)(sh sk R ) is a rational function of each of the vari-
e

ables sh,sk, and R_. It has poles of order ny ¢ 05 1, considered

as a function of s, and the number of these poles is dependent upon )), [T

and N. It is easily demonstrated that /a\("i’“’ )\R Zyt=t ) = 0, for
Mt

t-t < tn 7 and for any value ofﬁ), and that this result is compatible
172
with equation (4.27), when sinj) n = 0, in the sense that

o ol s N (V) ., . ! =
Lim 'A (7) e )(R ,Z,u-t ) = /Q\E a Gt sZytet ) (4.50)
N > mn l 2z e

as a result of equation (L.46).
If this process converges when sin 20w % 0, equation (4.50) would be
]
much more satisfactory definition of /x (RO,Z,tot ) thar that pro-
12

vided by equaticn (4.26), as this impulce response would then always corre-

spond to the appropriate geometrical path.
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Although the integration over s in equation (4.49) could be carried
out formally in terms of residues, the nuwaber and location of the poles
depends upon N in such a way thst the author has been unable to avaluate
the limit involved in equation (4.50) or prove that it exists. The physical
role ol the peometric paths leads one to expect the limit to exist, but
there is very little hope of reducing the calculation to processes of suf-

ficient simnlicity to warrant further considevration in this paper.
! pag



5. CONCLUSION

A theoretical investigaticn has been made of the propagation of
elastic pulses through rods and plates. Thie investigation is by no

means exhaustive as it has bheen limited to a plane longitudinal drive.

-3

ransverse drives and point-source drives ars equally inteprssting from
the point of view of making physical measurements of elastic constanta,
ay ~re the parallel problems involving non-isotropic medie.

In the case of the plate, these mathematical methods are capable of
treating the transverse drive, point-scurce drives, and the non-ieotropic
media with minor alterations. The author intends to treat these and certain
related gecphysical problems in future papers.

In the case of vhe rod, it is clear that some other mathematical tool
must be applied to the much more complicated functions wiich sre involved.
The primary oblective of this research, a quantitrtive wave treatment of
the experiments reported by Hughes, Pondrom, and Mims, has not been com-
pletely attained. At present the best enproach is to consider the effects
that appear in connection with rods in terms of an analogy with those that
appear in conniection with the plate. This 13, at best, only & qualitative
analysis.

For a longitudinal drive on & plate, it has been shown that the
tsundariea of the plate produce refliected or echo wave trains which corre-
spond to each of the paths predicted by the mathnds of geometric optice.
It is found that the critical anygie paiis should be the most evident

experimentally as the assoclated wave traine have a much more abrupt start.
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It is further found that these wave trains interfere with one another in
such a way that, as the ratio of the dAistance of transmission to the
thickness of the plate becones infinite, the entire disturbance becomes
asymptotically & disturbance traveling with the velocity c, which 1s
classically the lengltudinal velocity of propagation for a plate of zero
thickness. Thess resuits are obtained independent of any sssumptions re-
garding the frequsncy spectrum of the pulse.

Ry analcgy, one should expect longitudinsl drive on & rod to result
in wave trains which correspond tc each of the paths preiicted by means
of geometricsl optics, but that those wave trains corresponding to the
critical angle paths and the direct dilatational path will be the most
easily detected. As the ratio of the distance of transmission to the
diametsr becomes infinite, inierference of the above wave trains should
nroduce the asymptotic result of a single wave train propagated with the
speed, 01/2, found by Rayleigh for a rod of zero radius. It is also to
be expected that the frequsncy spectrum, or shape of the driving pulse;
is of no importance to the theory. All of the conclusive findings of
Secticn 4 eare in accord with this analogy.

The experimental observation of the various wavs trains is ccmplicated
by the multitude of ways in which interference can take place. This be-
comas particularly difficult when the duration of the dri.ing pulse F(t)
is greater than the diffarences between the minimun group-transit times
of several of the various refloctad wave trains. This conditizn existed
in the experlmental work reported by Hughes; Pondrom, and Himsl and ef-
fectively prevented tic ldentification of any wave trains axcept those

corresponding to the direst dilatational and critical angle psths which
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correspoud to the ccntours r% nz. The more general paths corregponding
to 11&?2 with ny small but not zero generally give rise to slow starting
transients as pointed out in 3Section 3. However, as (Z/ZRO) is made larger,
these rises become more nearly like those corresponding to the critical
angle paths and should them be mor - raadily datected. Unfortunately, ¢
minimum group transit times Ezln2-ﬁ> EZ n, as (Z/Z}?.Q)“'i> ©©, and the
wave trains corrcsponding to the more gene;al paths interfere with other
wave trains under the same conditions that they give fairly sharp rises
unless F(t) is sufficiently short inm duration to avoid this interference.

This point 1s illustrated by Fig. 5.1 which is a reproduction of the
oscillographic traces for a cold=-rolled steel rod 2.645 cm. in diameter
and 5.08 ca. in length. For this sample of stcel, a was found tu be 5880
metera/sec., b was found tc be 32N3.5 meters/sec., and the value .289 was
obtained for O .

The primary dilatational disturbance begins at point A, 8.69 usec.

after the start of the driving pulse, which had an appreciable amplitude

for some 4 usec. Since the minimum group-transit vimes Ez s assoclsted

s
with the contours ri o are given by
i
To 2 - 2
t“1° = (1/a) [z + (mlRo)] (5.1)

as the entirc path is traversad as a dilatational wive, we thus find
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- 574/2
VA Ll > (mlno/z):]

Cunfining our attention to t. , we find

0
lo

o I- ni/2
t) / 8.69 = Ll . (3.6&5/5.08)‘]

(o]

or

Ei . = 10.696 usec.

Thus, the corresponding train of waves would interfere with the direct
cdilatitional wave train over half ol its length. Ac ny increases, some
of the corresponding wave trains would be expected to be resolved in terms
of time but would not be expected to have a sharp enovgh rilse to be de-
tectud.

Tne obvious arrival at point B is due tc a3 critical angle path corre-
sponding to thea contour TZ 1 The arrival tinme Eg 1 is found to be 18.61
usec, after tne s .rt of the driving pulse and is in agresment with calcu-

lations based upon equation (3.52). The wave train corresponding to the

minimuwn group-transit time E? 1 which 18 21.23 usec as calculatsd fron
Fe .
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oquations (3.46), (3.47), and (3.40), end thus it should interfere with

o
o

Thess conditions becoms much more aggravated =s (Z/ZRO) incresses.

the wave train corresponding to t

Since th: remainder of the rods considered have larger length to diameter

ratios then the one considered above, it is apparent tiat there was little
ikelihood of identifying any wave trains except thcse corresponding to

the direct dilatational and critical angle paths wnich always have sharply

rising initials.

more general wave trains corresponding to the minimum group-transit ¢imes

rig with ™ ¥ O can be obtained by either shortening ths duration of

n.n
thi iriving pulse or by increasing both the length and the diameter of
the rods tc be cansidered by a factor of approximately ten so as to get a
greater separation of nelghboring values of €:1n2°

The Yatter alternative is not very acceptable to this laboratory as
the fundamental reason for developing this method of measuring velocities
of elastic waves was to get a system in which the rod-shaped sample and
the necessary driving and detacting crystals could be placed in a smsll
volune inside of a hnigh-pressure chamber. Thus, with one set-up, oneg
can measure the velocities ¢f rotational and dilatational waves for varicus
hydrostatic pressures and temperatures. It is consequeniiy desirable to
puirsue the former slternative, and efforts are now being made to rediu-a

the duration of F(t) and increase its amplitude 80 as to increase the

number of arrivals capatle of being identified.
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Ths question of precisely what is being measurad in these experiments
is clossly tied in with the naturs of the driving pulse. If F(t) = O fer
t < 0 and is non-zerc for any short time interval, it 13 a well recognized
fant that this function must be considered to have s continucus distribution
of frequencies running from 0 to ¢, All elastic materials, for one cor more
reasons, are expected to becoms diapersive as the frejuency of a simple
harmonic disturbance becomes sufficiently large. Thus, the velocities &
and b are complex functions of the frequency which is represented in the
analysis of this paper by the symbol s. The velocities measured aro
apnarently those associated with the first arrival of an abruptly initiated
disturbance or "wave~front" veloclitles. Paralleling the reasoning of

Somrerfeld and Brillouin9

, one might say that the velocities measured are
really the limits of a and b as 3 —> 00 . Such a statement is rather naive
since the results of any such measurement are very likaly te be a function
of the sensitivity of the detecting mechanism. Without a complete and ex-
perimentally acceptable theory of dlspsrsion, one canrot say when the de~
tector 1s sensitive enough to detect the very first arrival. There is some
reason to expect that an extremely small part of the erergy of an abruptly
atarting elastic disturbance is propagated with the spesd of 1light.

In the ebsence of a complete theory of elastic dispersion, no exact
description of the measured velocities can he given. Cne cawn only stste
thet the measured velocities are the aprerent "wave-front" velocities as
observed with apparatus of specified characteristics. It is tc be expected
that an acceptable theory of dispersion will result from the study of the

resalts of auch experiments as theae.




L)

BIBLIOGRAFPHY

Bourgin, D. G., Mathematical Reviews, L, 121 (1943).

Brillouin, L., "Uber die Fortpflanzung des Lichtes in disperigierenden

Medien, " Annalen der Physik,il, 203-240 (1914).

Cooper, J. L. B., "The Propag=tion of zlastic Waves in a Rod,"

Philosophical Magszine Series 7, 38, 1-22 (1547).

Perrar, W. L., A Textbook of Convergence {Uxford 1538}, 138-145.

Handbuck der Physik, Rand VI (Verlag. Julius Springer, Berlin, 1928}.

Hughes, D. 3., Pondrom, W. L. and Mims, R. L., "Propagation ol Elastic

Pulses in Metal Rods, " Physical Review, 75, 1552-1556 (1949).

Lamb, H., "The Flexure of an Elasstic Plate,” Proceedings of the

Mathemstical Societ.y of London, 21, 77-89 (1891).

"On Waves in an Elastic ilate," Proceedings of the Royal

Society of Lo..don Series A, 93, 114-128 (1916/17).

Love, A. E. H., A Treatise on The Mathematical Theory of Elasticity,

(Cambridge 1927)"

Pochharmer, L., "Uber die Fortflanzungsgeschwindigkeiten kleirar
Schwingungen in einam unbegrentsten isotropen Kreiscylinder,"
Journsl fur Mathematjk (Crelles), Band 81, 324~336 (1876).

Poincare, H., Lecons sur la theorie de l'slasticite (Paris 1892).

Prescott, J., "klastic Waves and Vibrations of Thin Rods," Philosophical

Magezine Ssries 7, 33, 703-754 (1942).
Lord Hayleigh, "On the Free Vibrations of an Infinite Plate," DProceedings

of the Mathematicel Scciety of lLondon, 20, 225-234 (1889).

"On Wavecs Propagated along the Plans Surface of an Flastic

Solld," Froceedings of the Mathematical Socisty of London,

UE, L=1d {1any.



Lord Rayleigh, Theory of Sound (Cambridge, 1877).

Sommerfeld, A., "Uber die Fortpflanzung des Lichtes in dispergierenden
Msdien," Annalen der Physik, Lk, 177-202 (1914).

Titchmarsh, E. C., Introduction to iz Theory of Fourler Integrels

(Oxferd, 1937).

Watson, G. N., 4 TIreatise on The Theory cof 3essal Functions (Cambri ige,

IV

7 =y

Whittaker, E. T., and Watson, G. N., A Course in Modern Anslysis,

Cambridge, 19L0).




	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109

